Let n ≥ 2 and , where , , , k < n. We prove that for some s,s’ the space is a multiplicative algebra.
@article{bwmeta1.element.bwnjournal-article-apmv71z2p199bwm, author = {Henryk Ko\l akowski}, title = {Properties of the Sobolev space $H\_k^{s,s^{\prime }}$ }, journal = {Annales Polonici Mathematici}, volume = {72}, year = {1999}, pages = {199-209}, zbl = {0945.46016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv71z2p199bwm} }
Henryk Kołakowski. Properties of the Sobolev space $H_k^{s,s^{\prime }}$ . Annales Polonici Mathematici, Tome 72 (1999) pp. 199-209. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv71z2p199bwm/
[00000] [1] M. Sable-Tougeron, Régularité microlocale pour des problèmes aux limites non linéaires, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 1, 39-82. | Zbl 0577.35004
[00001] [2] B. Yu. Sternin, Elliptic and parabolic boundary value problems on manifolds with boundary components of different dimensions, Trudy Moskov. Mat. Obshch. 15 (1966), 346-382 (in Russian). | Zbl 0161.08504