Difference methods for the Darboux problem for functional partial differential equations
Tomasz Człapiński
Annales Polonici Mathematici, Tome 72 (1999), p. 171-193 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:262534
@article{bwmeta1.element.bwnjournal-article-apmv71z2p171bwm,
     author = {Tomasz Cz\l api\'nski},
     title = {Difference methods for the Darboux problem for functional partial differential equations},
     journal = {Annales Polonici Mathematici},
     volume = {72},
     year = {1999},
     pages = {171-193},
     zbl = {0937.35022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv71z2p171bwm}
}
Tomasz Człapiński. Difference methods for the Darboux problem for functional partial differential equations. Annales Polonici Mathematici, Tome 72 (1999) pp. 171-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv71z2p171bwm/

[00000] [1] P. Brandi, Z. Kamont and A. Salvadori, Approximate solutions of mixed problems for first order partial differential-functional equations, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 277-302. | Zbl 0737.35134

[00001] [2] T. Człapiński, Existence of solutions of the Darboux problem for partial differen- tial-functional equations with infinite delay in a Banach space, Comment. Math. 35 (1995), 111-122. | Zbl 0859.35131

[00002] [3] Z. Denkowski and A. Pelczar, On the existence and uniqueness of solutions of some partial differential functional equations, Ann. Polon. Math. 35 (1978), 261-304.

[00003] [4] Z. Kamont, Finite difference approximations for first-order partial differential-functional equations, Ukrain. Math. J. 46 (1994), 265-287.

[00004] [5] Z. Kamont and M. Kwapisz, On the Cauchy problem for differential-delay equations in a Banach space, Math. Nachr. 74 (1976), 173-190. | Zbl 0288.34069

[00005] [6] Z. Kamont and M. Kwapisz, On non-linear Volterra integral-functional equations in several variables, Ann. Polon. Math. 40 (1981), 1-29. | Zbl 0486.45011

[00006] [7] Z. Kamont and H. Leszczyński, Stability of difference equations generated by parabolic differential-functional problems, Rend. Mat. 16 (1996), 265-287. | Zbl 0859.65094

[00007] [8] Z. Kamont and H. Leszczyński, Numerical solutions to the Darboux problem with the functional dependence, Georgian Math. J. 5 (1998), 71-90. | Zbl 0955.65076

[00008] [9] H. Leszczyński, Convergence of one-step difference methods for nonlinear para- bolic differential-functional systems with initial-boundary conditions of the Dirichlet type, Comment. Math. 30 (1990), 357-375.

[00009] [10] H. Leszczyński, Convergence of difference analogues to the Darboux problem with functional dependence, Bull. Belgian Math. Soc. 5 (1998), 39-57. | Zbl 0920.35163

[00010] [11] M. Malec, C. Mączka and W. Voigt, Weak difference-functional inequalities and their applications to the difference analogue of non-linear parabolic differential-functional equations, Beiträge Numer. Math. 11 (1983), 69-79. | Zbl 0526.34056

[00011] [12] M. Malec and M. Rosati, Weak monotonicity for non linear systems of functional-finite difference inequalities of parabolic type, Rend. Mat. 3 (1983), 157-170. | Zbl 0557.39006

[00012] [13] M. Malec et A. Schiaffino, Méthode aux différence finies pour une équation non-linéaire différentielle fonctionnelle du type parabolique avec une condition initiale de Cauchy, Boll. Un. Mat. Ital. 7B (1987), 99-109. | Zbl 0617.65083

[00013] [14] A. Pelczar, Some functional-differential equations, Dissertationes Math. 100 (1973).

[00014] [15] T. Ważewski, Sur une extension du procédé de I. Jungermann pour établir la convergence des approximations successives au cas des équations différentielles ordinaires, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 43-46. | Zbl 0091.28801

[00015] [16] M. Zennaro, Delay differential equations: theory and numerics, in: Theory and Numerics of Ordinary and Partial Differential Equations, Clarendon Press, Oxford, 1995, 291-333. | Zbl 0847.34072