The paper discusses the asymptotic properties of solutions of the scalar functional differential equation . Asymptotic formulas are given in terms of solutions of the appropriate scalar functional nondifferential equation.
1991 Mathematics Subject Classification: Primary 34K15, 34K25; Secondary 39B05.
@article{bwmeta1.element.bwnjournal-article-apmv71z2p161bwm, author = {Jan \v Cerm\'ak}, title = {On the delay differential equation y'(x) = ay($\tau$(x)) + by(x)}, journal = {Annales Polonici Mathematici}, volume = {72}, year = {1999}, pages = {161-169}, zbl = {0947.34056}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv71z2p161bwm} }
Jan Čermák. On the delay differential equation y'(x) = ay(τ(x)) + by(x). Annales Polonici Mathematici, Tome 72 (1999) pp. 161-169. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv71z2p161bwm/
[00000] [1] N. G. de Bruijn, The difference-differential equation , I, II, Nederl. Akad. Wettensch. Proc. Ser. A 56 = Indag. Math. 15 (1953), 449-464.
[00001] [2] J. Diblík, Asymptotic behaviour of solutions of linear differential equations with delay, Ann. Polon. Math. 58 (1993), 131-137. | Zbl 0784.34053
[00002] [3] J. Diblík, Asymptotic representation of solutions of equation ẏ(t) = β(t)[y(t)-y(t-τ(t))], J. Math. Anal. Appl. 217 (1998), 200-215. | Zbl 0892.34067
[00003] [4] I. Győri and M. Pituk, Comparison theorems and asymptotic equilibrium for delay differential and difference equations, Dynam. Systems Appl. 5 (1996), 277-302. | Zbl 0859.34053
[00004] [5] M. L. Heard, A change of variables for functional differential equations, J. Differential Equations 18 (1975), 1-10.
[00005] [6] T. Kato and J. B. McLeod, The functional differential equation y'(x) = ay(λx) + by(x), Bull. Amer. Math. Soc. 77 (1971), 891-937. | Zbl 0236.34064
[00006] [7] M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Encyclopedia Math. Appl., Cambridge Univ. Press, 1990.
[00007] [8] F. Neuman, On transformations of differential equations and systems with deviating argument, Czechoslovak Math. J. 31 (1981), 87-90. | Zbl 0463.34051
[00008] [9] M. Pituk, On the limits of solutions of functional differential equations, Math. Bohemica 118 (1993), 53-66.