We study series expansions for harmonic functions analogous to Hartogs series for holomorphic functions. We apply them to study conjugate harmonic functions and the space of square integrable harmonic functions.
@article{bwmeta1.element.bwnjournal-article-apmv71z2p151bwm, author = {Ewa Ligocka}, title = {On the Hartogs-type series for harmonic functions on Hartogs domains in $$\mathbb{R}$^n $\times$ $\mathbb{R}$^m$, m $\geq$ 2}, journal = {Annales Polonici Mathematici}, volume = {72}, year = {1999}, pages = {151-160}, zbl = {0936.31005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv71z2p151bwm} }
Ewa Ligocka. On the Hartogs-type series for harmonic functions on Hartogs domains in $ℝ^n × ℝ^m$, m ≥ 2. Annales Polonici Mathematici, Tome 72 (1999) pp. 151-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv71z2p151bwm/
[000] [1] N. Aronszajn, T. Creese and L. Lipkin, Polyharmonic Functions, Clarendon Press, Oxford, 1985.
[001] [2] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer, 1992. | Zbl 0765.31001
[002] [3] Z. Ben Nahia and N. Ben Salem, Spherical harmonics and applications associated with the Weinstein operator, in: Potential Theory - ICPT 94 (Kouty, 1994), de Gruyter, Berlin, 1996, 233-241. | Zbl 0858.33008
[003] [4] J. Delsarte, Une extension nouvelle de la théorie des fonctions presque-périodiques de Bohr, Acta Math. 69 (1938), 259-317. | Zbl 0020.01902
[004] [5] W. K. Hayman, Power series expansions for harmonic functions, Bull. London Math. Soc. 2 (1970), 152-158. | Zbl 0201.43302
[005] [6] J. L. Lions, Opérateurs de Delsarte et problèmes mixtes, Bull. Soc. Math. France 84 (1956), 9-95. | Zbl 0075.10804
[006] [7] B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17-92. | Zbl 0139.29002
[007] [8] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. | Zbl 0207.13501
[008] [9] K. Trimèche, Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0,1), J. Math. Pures Appl. 60 (1981), 51-98. | Zbl 0416.44002
[009] [10] A. Weinstein, On a singular differential operator, Ann. Mat. Pura Appl. 49 (1960), 359-365. | Zbl 0094.06101
[010] [11] R. Z. Yeh, Analysis and applications of holomorphic functions in higher dimensions, Trans. Amer. Math. Soc. 345 (1994), 151-177. | Zbl 0808.30029