On the Hartogs-type series for harmonic functions on Hartogs domains in n×m, m ≥ 2
Ewa Ligocka
Annales Polonici Mathematici, Tome 72 (1999), p. 151-160 / Harvested from The Polish Digital Mathematics Library

We study series expansions for harmonic functions analogous to Hartogs series for holomorphic functions. We apply them to study conjugate harmonic functions and the space of square integrable harmonic functions.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:262674
@article{bwmeta1.element.bwnjournal-article-apmv71z2p151bwm,
     author = {Ewa Ligocka},
     title = {On the Hartogs-type series for harmonic functions on Hartogs domains in $$\mathbb{R}$^n $\times$ $\mathbb{R}$^m$, m $\geq$ 2},
     journal = {Annales Polonici Mathematici},
     volume = {72},
     year = {1999},
     pages = {151-160},
     zbl = {0936.31005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv71z2p151bwm}
}
Ewa Ligocka. On the Hartogs-type series for harmonic functions on Hartogs domains in $ℝ^n × ℝ^m$, m ≥ 2. Annales Polonici Mathematici, Tome 72 (1999) pp. 151-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv71z2p151bwm/

[000] [1] N. Aronszajn, T. Creese and L. Lipkin, Polyharmonic Functions, Clarendon Press, Oxford, 1985.

[001] [2] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer, 1992. | Zbl 0765.31001

[002] [3] Z. Ben Nahia and N. Ben Salem, Spherical harmonics and applications associated with the Weinstein operator, in: Potential Theory - ICPT 94 (Kouty, 1994), de Gruyter, Berlin, 1996, 233-241. | Zbl 0858.33008

[003] [4] J. Delsarte, Une extension nouvelle de la théorie des fonctions presque-périodiques de Bohr, Acta Math. 69 (1938), 259-317. | Zbl 0020.01902

[004] [5] W. K. Hayman, Power series expansions for harmonic functions, Bull. London Math. Soc. 2 (1970), 152-158. | Zbl 0201.43302

[005] [6] J. L. Lions, Opérateurs de Delsarte et problèmes mixtes, Bull. Soc. Math. France 84 (1956), 9-95. | Zbl 0075.10804

[006] [7] B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17-92. | Zbl 0139.29002

[007] [8] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. | Zbl 0207.13501

[008] [9] K. Trimèche, Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0,1), J. Math. Pures Appl. 60 (1981), 51-98. | Zbl 0416.44002

[009] [10] A. Weinstein, On a singular differential operator, Ann. Mat. Pura Appl. 49 (1960), 359-365. | Zbl 0094.06101

[010] [11] R. Z. Yeh, Analysis and applications of holomorphic functions in higher dimensions, Trans. Amer. Math. Soc. 345 (1994), 151-177. | Zbl 0808.30029