Uniqueness of meromorphic functions when two linear differential polynomials share the same 1-points
Indrajit Lahiri
Annales Polonici Mathematici, Tome 72 (1999), p. 113-128 / Harvested from The Polish Digital Mathematics Library

We prove a uniqueness theorem for meromorphic functions involving linear differential polynomials generated by them. As consequences of the main result we improve some previous results.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:262554
@article{bwmeta1.element.bwnjournal-article-apmv71z2p113bwm,
     author = {Indrajit Lahiri},
     title = {Uniqueness of meromorphic functions when two linear differential polynomials share the same 1-points},
     journal = {Annales Polonici Mathematici},
     volume = {72},
     year = {1999},
     pages = {113-128},
     zbl = {0938.30022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv71z2p113bwm}
}
Indrajit Lahiri. Uniqueness of meromorphic functions when two linear differential polynomials share the same 1-points. Annales Polonici Mathematici, Tome 72 (1999) pp. 113-128. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv71z2p113bwm/

[000] [1] M. Furuta and N. Toda, On exceptional values of meromorphic functions of divergence class, J. Math. Soc. Japan 25 (1973), 667-679. | Zbl 0262.30031

[001] [2] F. Gross, Factorization of Meromorphic Functions, U.S. Govt. Math. Res. Center, Washington, D.C., 1972. | Zbl 0266.30006

[002] [3] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.

[003] [4] I. Lahiri and D. K. Sharma, The characteristic function and exceptional value of the differential polynomial of a meromorphic function, Indian J. Pure Appl. Math. 24 (1993), 779-790. | Zbl 0816.30024

[004] [5] P. Li and C. C. Yang, Some further results on the unique range sets of meromorphic functions, Kodai Math. J. 18 (1995), 437-450. | Zbl 0849.30025

[005] [6] M. Ozawa, Unicity theorems for entire functions, J. Anal. Math. 30 (1976), 411-420. | Zbl 0337.30020

[006] [7] K. Shibazaki, Unicity theorems for entire functions of finite order, Mem. National Defense Acad. Japan 21 (1981), no. 3, 67-71. | Zbl 0507.30022

[007] [8] N. Toda, On a modified deficiency of meromorphic functions, Tôhoku Math. J. 22 (1970), 635-658. | Zbl 0213.09202

[008] [9] C. C. Yang, On two entire functions which together with their first derivatives have the same zeros, J. Math. Anal. Appl. 56 (1976), 1-6. | Zbl 0338.30018

[009] [10] H. X. Yi, Meromorphic functions with two deficient values, Acta Math. Sinica 30 (1987), 588-597. | Zbl 0654.30023

[010] [11] H. X. Yi, Meromorphic functions that share two or three values, Kodai Math. J. 13 (1990), 363-372. | Zbl 0712.30029

[011] [12] H. X. Yi, A question of C. C. Yang on the uniqueness of entire functions, ibid. 13 (1990), 39-46. | Zbl 0707.30022

[012] [13] H. X. Yi, Unicity theorems for entire or meromorphic functions, Acta Math. Sinica (N.S.) 10 (1994), 121-131. | Zbl 0806.30022

[013] [14] H. X. Yi, Meromorphic functions that share one or two values, Complex Variables Theory Appl. 28 (1995), 1-11. | Zbl 0841.30027

[014] [15] H. X. Yi and C. C. Yang, Unicity theorems for two meromorphic functions with their first derivatives having the same 1-points, Acta Math. Sinica 34 (1991), 675-680. | Zbl 0736.30021

[015] [16] H. X. Yi and C. C. Yang, A uniqueness theorem for meromorphic functions whose nth derivative share the same 1-points, J. Anal. Math. 62 (1994), 261-270. | Zbl 0799.30019