Continuous linear extension operators on spaces of holomorphic functions on closed subgroups of a complex Lie group
Do Duc Thai ; Dinh Huy Hoang
Annales Polonici Mathematici, Tome 72 (1999), p. 105 / Harvested from The Polish Digital Mathematics Library

We show that the restriction operator of the space of holomorphic functions on a complex Lie group to an analytic subset V has a continuous linear right inverse if it is surjective and if V is a finite branched cover over a connected closed subgroup Γ of G. Moreover, we show that if Γ and G are complex Lie groups and V ⊂ Γ × G is an analytic set such that the canonical projection π1:VΓ is finite and proper, then RV:O(Γ×G)ImRVO(V) has a right inverse

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:262831
@article{bwmeta1.element.bwnjournal-article-apmv71z2p105bwm,
     author = {Do Duc Thai and Dinh Huy Hoang},
     title = {Continuous linear extension operators on spaces of holomorphic functions on closed subgroups of a complex Lie group},
     journal = {Annales Polonici Mathematici},
     volume = {72},
     year = {1999},
     pages = {105},
     zbl = {0945.46013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv71z2p105bwm}
}
Do Duc Thai; Dinh Huy Hoang. Continuous linear extension operators on spaces of holomorphic functions on closed subgroups of a complex Lie group. Annales Polonici Mathematici, Tome 72 (1999) p. 105. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv71z2p105bwm/

[000] [1] A. Aytuna, The Fréchet space structure of global sections of certain coherent analytic sheaves, Math. Balkan. (N.S.) 3 (1989), 311-324. | Zbl 0712.46016

[001] [2] P. B. Djakov and B. S. Mitiagin, The structure of polynomial ideals in the algebra of entire functions, Studia Math. 68 (1980), 85-104. | Zbl 0434.46034

[002] [3] G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer, 1976. | Zbl 0343.32002

[003] [4] H. Kazama and T. Umeno, ∂̅-cohomology of complex Lie groups, Publ. RIMS Kyoto Univ. 26 (1990), 473-484. | Zbl 0718.32018

[004] [5] J. Leiterer, Banach coherent sheaves, Math. Nachr. 85 (1978), 91-109. | Zbl 0409.32017

[005] [6] Y. Matsushima et A. Morimoto, Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France 88 (1960), 137-155. | Zbl 0094.28104

[006] [7] S. Takeuchi, On completeness of holomorphic principal bundles, Nagoya Math. J. 57 (1974), 121-138. | Zbl 0284.32020

[007] [8] D. Vogt, Subspaces and quotient spaces of (s), in: Functional Analysis: Surveys and Recent Results, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland Math. Stud. 27, North-Holland, 1977, 168-187.

[008] [9] D. Vogt, Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen, Manuscripta Math. 37 (1982), 269-301. | Zbl 0512.46003

[009] [10] D. Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J. Reine Angew. Math. 345 (1983), 182-200.

[010] [11] D. Vogt, Über die Existenz von Ausdehnungsoperatoren für holomorphe Funktionen auf analytischen Mengen in n, preprint.

[011] [12] V. P. Zaharyuta, Isomorphism of spaces of analytic functions, Dokl. Akad. Nauk SSSR 225 (1980), 11-14 (in Russian); English transl.: Soviet Math. Dokl. 22 (1980), 631-634.