We study the asymptotic behaviour of discrete time processes which are products of time dependent transformations defined on a complete metric space. Our sufficient condition is applied to products of Markov operators corresponding to stochastically perturbed dynamical systems and fractals.
@article{bwmeta1.element.bwnjournal-article-apmv71z1p47bwm, author = {Marta Tyran-Kami\'nska}, title = {Stability of Markov processes nonhomogeneous in time}, journal = {Annales Polonici Mathematici}, volume = {72}, year = {1999}, pages = {47-59}, zbl = {0938.60057}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv71z1p47bwm} }
Marta Tyran-Kamińska. Stability of Markov processes nonhomogeneous in time. Annales Polonici Mathematici, Tome 72 (1999) pp. 47-59. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv71z1p47bwm/
[000] [1] M. F. Barnsley, Fractals Everywhere, Academic Press, New York, 1988.
[001] [2] M. F. Barnsley, S. G. Demko, J. H. Elton and J. S. Geronimo, Invariant measures arising from iterated function systems with place dependent probabilities, Ann. Inst. Henri Poincaré 24 (1988), 367-394. | Zbl 0653.60057
[002] [3] R. Fortet et B. Mourier, Convergence de la répartition empirique vers la répartition théorétique, Ann. Sci. École Norm. Sup. 70 (1953), 267-285. | Zbl 0053.09601
[003] [4] K. Horbacz, Dynamical systems with multiplicative perturbations: the strong convergence of measures, Ann. Polon. Math. 58 (1993), 85-93. | Zbl 0782.47007
[004] [5] J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747. | Zbl 0598.28011
[005] [6] A. Lasota, From fractals to stochastic differential equations, in: Chaos - The Interplay Between Stochastic and Deterministic Behaviour (Karpacz '95), Lecture Notes in Phys. 457, Springer, 1995, 235-255.
[006] [7] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise-Stochastic Aspects of Dynamics, Springer, 1994. | Zbl 0784.58005
[007] [8] A. Lasota and M. C. Mackey, Stochastic perturbation of dynamical systems: the weak convergence of measures, J. Math. Anal. Appl. 138 (1989), 232-248. | Zbl 0668.93081
[008] [9] A. Lasota and J. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41-77. | Zbl 0804.47033
[009] [10] K. Łoskot and R. Rudnicki, Limit theorems for stochastically perturbed dynamical systems, J. Appl. Probab. 32 (1995), 459-469. | Zbl 0829.60057
[010] [11] K. Oczkowicz, Asymptotic stability of Markov operators corresponding to the dynamical systems with multiplicative perturbations, Ann. Math. Sil. 7 (1993), 99-108. | Zbl 0804.58030