Stability of Markov processes nonhomogeneous in time
Marta Tyran-Kamińska
Annales Polonici Mathematici, Tome 72 (1999), p. 47-59 / Harvested from The Polish Digital Mathematics Library

We study the asymptotic behaviour of discrete time processes which are products of time dependent transformations defined on a complete metric space. Our sufficient condition is applied to products of Markov operators corresponding to stochastically perturbed dynamical systems and fractals.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:262552
@article{bwmeta1.element.bwnjournal-article-apmv71z1p47bwm,
     author = {Marta Tyran-Kami\'nska},
     title = {Stability of Markov processes nonhomogeneous in time},
     journal = {Annales Polonici Mathematici},
     volume = {72},
     year = {1999},
     pages = {47-59},
     zbl = {0938.60057},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv71z1p47bwm}
}
Marta Tyran-Kamińska. Stability of Markov processes nonhomogeneous in time. Annales Polonici Mathematici, Tome 72 (1999) pp. 47-59. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv71z1p47bwm/

[000] [1] M. F. Barnsley, Fractals Everywhere, Academic Press, New York, 1988.

[001] [2] M. F. Barnsley, S. G. Demko, J. H. Elton and J. S. Geronimo, Invariant measures arising from iterated function systems with place dependent probabilities, Ann. Inst. Henri Poincaré 24 (1988), 367-394. | Zbl 0653.60057

[002] [3] R. Fortet et B. Mourier, Convergence de la répartition empirique vers la répartition théorétique, Ann. Sci. École Norm. Sup. 70 (1953), 267-285. | Zbl 0053.09601

[003] [4] K. Horbacz, Dynamical systems with multiplicative perturbations: the strong convergence of measures, Ann. Polon. Math. 58 (1993), 85-93. | Zbl 0782.47007

[004] [5] J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747. | Zbl 0598.28011

[005] [6] A. Lasota, From fractals to stochastic differential equations, in: Chaos - The Interplay Between Stochastic and Deterministic Behaviour (Karpacz '95), Lecture Notes in Phys. 457, Springer, 1995, 235-255.

[006] [7] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise-Stochastic Aspects of Dynamics, Springer, 1994. | Zbl 0784.58005

[007] [8] A. Lasota and M. C. Mackey, Stochastic perturbation of dynamical systems: the weak convergence of measures, J. Math. Anal. Appl. 138 (1989), 232-248. | Zbl 0668.93081

[008] [9] A. Lasota and J. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41-77. | Zbl 0804.47033

[009] [10] K. Łoskot and R. Rudnicki, Limit theorems for stochastically perturbed dynamical systems, J. Appl. Probab. 32 (1995), 459-469. | Zbl 0829.60057

[010] [11] K. Oczkowicz, Asymptotic stability of Markov operators corresponding to the dynamical systems with multiplicative perturbations, Ann. Math. Sil. 7 (1993), 99-108. | Zbl 0804.58030