We consider a concave iteration semigroup of linear continuous set-valued functions defined on a closed convex cone in a separable Banach space. We prove that such an iteration semigroup has a selection which is also an iteration semigroup of linear continuous functions. Moreover it is majorized by an "exponential" family of linear continuous set-valued functions.
@article{bwmeta1.element.bwnjournal-article-apmv71z1p31bwm, author = {Jolanta Olko}, title = {Concave iteration semigroups of linear set-valued functions}, journal = {Annales Polonici Mathematici}, volume = {72}, year = {1999}, pages = {31-38}, zbl = {0969.47030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv71z1p31bwm} }
Jolanta Olko. Concave iteration semigroups of linear set-valued functions. Annales Polonici Mathematici, Tome 72 (1999) pp. 31-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv71z1p31bwm/
[000] [1] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, Berlin, 1977. | Zbl 0346.46038
[001] [2] M. Kisielewicz, Differential Inclusions and Optimal Control, PWN, Warszawa, and Kluwer, Dordrecht, 1991.
[002] [3] K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Nauk. Politech. Łódz. Mat. 559, Rozprawy Nauk. 114, Łódź, 1989.
[003] [4] J. Olko, Semigroups of set-valued functions, Publ. Math. Debrecen 51 (1997), 81-96.
[004] [5] J. Plewnia, On a family of set valued functions, Publ. Math. Debrecen 46 (1995), 149-159. | Zbl 0862.54015
[005] [6] A. Smajdor, Additive selections of a composition of additive set-valued functions, in: Iteration Theory (Batschuns, 1992), World Sci., 1996, 251-254. | Zbl 0914.39032
[006] [7] A. Smajdor, Increasing iteration semigroups of Jensen set-valued functions, Aequationes Math. 56 (1998), 131-142. | Zbl 0913.39013