The existence of nonnegative radial solutions for some systems of m (m ≥ 1) quasilinear elliptic equations is proved by a simple application of a fixed point theorem in cones.
@article{bwmeta1.element.bwnjournal-article-apmv71z1p19bwm, author = {Daqing Jiang and Huizhao Liu}, title = {On the existence of nonnegative radial solutions for p-Laplacian elliptic systems}, journal = {Annales Polonici Mathematici}, volume = {72}, year = {1999}, pages = {19-29}, zbl = {0928.34021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv71z1p19bwm} }
Daqing Jiang; Huizhao Liu. On the existence of nonnegative radial solutions for p-Laplacian elliptic systems. Annales Polonici Mathematici, Tome 72 (1999) pp. 19-29. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv71z1p19bwm/
[000] [1] L. H. Erbe and H. Y. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120 (1994), 743-748. | Zbl 0802.34018
[001] [2] R. Y. Ma, Existence of positive radial solutions for elliptic systems, J. Math. Anal. Appl. 201 (1996), 375-386. | Zbl 0859.35040