We give a special normal form for a non-semiquadratic hyperbolic CR-manifold M of codimension 2 in ℂ⁴, i.e., a construction of coordinates where the equation of M satisfies certain conditions. The coordinates are determined up to a linear coordinate change.
@article{bwmeta1.element.bwnjournal-article-apmv70z1p99bwm, author = {Vladimir V. E\v zov and Gerd Schmalz}, title = {Special normal form of a hyperbolic CR-manifold in C4}, journal = {Annales Polonici Mathematici}, volume = {69}, year = {1998}, pages = {99-107}, zbl = {0935.32032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv70z1p99bwm} }
Vladimir V. Ežov; Gerd Schmalz. Special normal form of a hyperbolic CR-manifold in ℂ⁴. Annales Polonici Mathematici, Tome 69 (1998) pp. 99-107. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv70z1p99bwm/
[000] [CM74] S. S. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271. | Zbl 0302.32015
[001] [Lob88] A. V. Loboda, Generic real analytic manifolds of codimension 2 in ℂ⁴ and their biholomorphic mappings, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 970-990 (in Russian); English transl.: Math. USSR-Izv. 33 (1989), 295-315. | Zbl 0662.32018
[002] [Lob90] A. V. Loboda, Linearizability of holomorphic mappings of generating manifolds of codimension 2 in ℂ⁴, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), 632-644 (in Russian); English transl.: Math. USSR-Izv. 36 (1991), 655-667. | Zbl 0705.32011
[003] [Poi07] H. Poincaré, Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Mat. Palermo 23 (1907), 185-220. | Zbl 38.0459.02
[004] [Sch95] G. Schmalz, CR-Mannigfaltigkeiten höherer Kodimension und ihre Automorphismen, Habilitation thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 1995, to appear in Math. Nachr.
[005] [Web78] S. M. Webster, On the Moser normal form at a non-umbilic point, Math. Ann. 233 (1978), 97-102. | Zbl 0358.32013