Some applications of a new integral formula for ̅b
Moulay-Youssef Barkatou
Annales Polonici Mathematici, Tome 69 (1998), p. 1-24 / Harvested from The Polish Digital Mathematics Library

Let M be a smooth q-concave CR submanifold of codimension k in n. We solve locally the ̅b-equation on M for (0,r)-forms, 0 ≤ r ≤ q-1 or n-k-q+1 ≤ r ≤ n-k, with sharp interior estimates in Hölder spaces. We prove the optimal regularity of the ̅b-operator on (0,q)-forms in the same spaces. We also obtain Lp estimates at top degree. We get a jump theorem for (0,r)-forms (r ≤ q-2 or r ≥ n-k-q+1) which are CR on a smooth hypersurface of M. We prove some generalizations of the Hartogs-Bochner-Henkin extension theorem on 1-concave CR manifolds.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:262710
@article{bwmeta1.element.bwnjournal-article-apmv70z1p1bwm,
     author = {Moulay-Youssef Barkatou},
     title = {Some applications of a new integral formula for $[?]\_{b}$
            },
     journal = {Annales Polonici Mathematici},
     volume = {69},
     year = {1998},
     pages = {1-24},
     zbl = {0927.32008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv70z1p1bwm}
}
Moulay-Youssef Barkatou. Some applications of a new integral formula for $∂̅_{b}$
            . Annales Polonici Mathematici, Tome 69 (1998) pp. 1-24. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv70z1p1bwm/

[000] [1] R. A. Airapetjan and G. M. Henkin, Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions, Russian Math. Surveys 39 (1984), 41-118.

[001] [2] R. A. Airapetjan and G. M. Henkin, Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions II, Math. USSR-Sb. 55 (1986), no. 1, 91-111.

[002] [3] A. Andreotti, G. Fredricks and M. Nacinovich, On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), 365-404. | Zbl 0482.35061

[003] [4] M. Y. Barkatou, Régularité höldérienne du ̅b sur les hypersurfaces 1-convexes-concaves, Math. Z. 221 (1996), 549-572.

[004] [5] M. Y. Barkatou, thesis, Grenoble, 1994.

[005] [6] M. Y. Barkatou, Formules locales de type Martinelli-Bochner-Koppelman sur des variétés CR, Math. Nachr., 1998.

[006] [7] M. Y. Barkatou, Optimal regularity for ̅b on CR manifolds, J. Geom. Anal., to appear.

[007] [8] S. Berhanu and S. Chanillo, Hölder and Lp estimates for a local solution of ̅b at top degree, J. Funct. Anal. 114 (1993), 232-256. | Zbl 0798.35120

[008] [9] A. Boggess, CR Manifolds and the Tangential Cauchy-Riemann Complex, CRC Press, Boca Raton, Fla., 1991.

[009] [10] A. Boggess and M.-C. Shaw, A kernel approach to the local solvability of the tangential Cauchy-Riemann equations, Trans. Amer. Math. Soc. 289 (1985), 643-658. | Zbl 0579.35062

[010] [11] L. Ehrenpreis, A new proof and an extension of Hartogs' theorem, Bull. Amer. Math. Soc. 67 (1961), 507-509.

[011] [12] B. Fischer, Kernels of Martinelli-Bochner type on hypersurfaces, Math. Z. 223 (1996), 155-183. | Zbl 0864.32003

[012] [13] R. Harvey and J. Polking, Fundamental solutions in complex analysis, Parts I and II, Duke Math. J. 46 (1979), 253-300 and 301-340. | Zbl 0441.35043

[013] [14] G. M. Henkin, Solutions des équations de Cauchy-Riemann tangentielles sur des variétés de Cauchy-Riemann q-convexes, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 27-30. | Zbl 0472.32014

[014] [15] G. M. Henkin, The Hans Lewy equation and analysis of pseudoconvex manifolds, Russian Math. Surveys 32 (1977), 59-130. | Zbl 0382.35038

[015] [16] G. M. Henkin, The method of integral representations in complex analysis, in: Several Complex Variables I, Encyclopaedia Math. Sci. 7, Springer, 1990, 19-116.

[016] [17] G. M. Henkin, The Hartogs-Bochner effect on CR manifolds, Soviet Math. Dokl. 29 (1984), 78-82. | Zbl 0601.32021

[017] [18] C. Laurent-Thiébaut, Résolution du ̅b à support compact et phénomène de Hartogs-Bochner dans les variétés CR, in: Proc. Sympos. Pure Math. 52, Amer. Math. Soc., 1991, 239-249. | Zbl 0742.32014

[018] [19] C. Laurent-Thiébaut and J. Leiterer, Uniform estimates for the Cauchy-Riemann equation on q-convex wedges, Ann. Inst. Fourier (Grenoble) 43 (1993), 383-436. | Zbl 0782.32014

[019] [20] C. Laurent-Thiébaut and J. Leiterer, Uniform estimates for the Cauchy-Riemann equation on q-concave wedges, Astérisque 217 (1993), 151-182. | Zbl 0796.32008

[020] [21] C. Laurent-Thiébaut and J. Leiterer, Andreotti-Grauert Theory on Hypersurfaces, Quaderni della Scuola Normale Superiore di Pisa, 1995. | Zbl 1161.32303

[021] [22] L. Ma and J. Michel, Local regularity for the tangential Cauchy-Riemann, J. Reine Angew. Math. 442 (1993), 63-90. | Zbl 0781.32022

[022] [23] J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984.

[023] [24] P. L. Polyakov, Sharp estimates for the operator ̅M on a q-concave CR manifold, preprint. | Zbl 0909.32005

[024] [25] R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Grad. Texts in Math. 108, Springer, 1986. | Zbl 0591.32002

[025] [26] R. M. Range and Y. T. Siu, Uniform estimates for the ∂̅-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1973), 325-354. | Zbl 0248.32015

[026] [27] M.-C. Shaw, Homotopy formulas for ̅b in CR manifolds with mixed Levi signatures, Math. Z. 224 (1997), 113-136.

[027] [28] E. M. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc. 79 (1973), 440-445. | Zbl 0257.35040

[028] [29] F. Trèves, Homotopy formulas in the tangential Cauchy-Riemann complex, Mem. Amer. Math. Soc. 434 (1990). | Zbl 0707.35105