Let M be a generic CR submanifold in , m = CR dim M ≥ 1, n = codim M ≥ 1, d = dim M = 2m + n. A CR meromorphic mapping (in the sense of Harvey-Lawson) is a triple , where: 1) is a ¹-smooth mapping defined over a dense open subset of M with values in a projective manifold Y; 2) the closure of its graph in defines an oriented scarred ¹-smooth CR manifold of CR dimension m (i.e. CR outside a closed thin set) and 3) in the sense of currents. We prove that extends meromorphically to a wedge attached to M if M is everywhere minimal and (real-analytic) or if M is a globally minimal hypersurface.
@article{bwmeta1.element.bwnjournal-article-apmv70z1p163bwm, author = {Jo\"el Merker and Egmont Porten}, title = {On the local meromorphic extension of CR meromorphic mappings}, journal = {Annales Polonici Mathematici}, volume = {69}, year = {1998}, pages = {163-193}, zbl = {0927.32024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv70z1p163bwm} }
Joël Merker; Egmont Porten. On the local meromorphic extension of CR meromorphic mappings. Annales Polonici Mathematici, Tome 69 (1998) pp. 163-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv70z1p163bwm/
[000] [1] E. Chirka, Complex Analytic Sets, Kluwer, Dordrecht, 1989. | Zbl 0683.32002
[001] [2] E. M. Chirka and E. L. Stout, Removable singularities in the boundary, in: Contributions to Complex Analysis and Analytic Geometry, Aspects of Math. E26, Vieweg, 1994, 43-104. | Zbl 0820.32008
[002] [3] T.-C. Dinh and F. Sarkis, Wedge removability of metrically thin sets and application to the CR meromorphic extension, preprint, 1997.
[003] [4] P. Dolbeault et G. M. Henkin, Chaînes holomorphes de bord donné dans , Bull. Soc. Math. France 125 (1997), 383-446.
[004] [5] F. R. Harvey and H. B. Lawson, On boundaries of complex analytic varieties, Ann. of Math., I: 102 (1975), 233-290; II: 106 (1977), 213-238. | Zbl 0317.32017
[005] [6] S. M. Ivashkovich, The Hartogs-type extension theorem for meromorphic maps into compact Kähler manifolds, Invent. Math. 109 (1992), 47-54. | Zbl 0738.32008
[006] [7] B. Jöricke, Removable singularities for CR-functions, Ark. Mat. 26 (1988), 117-143. | Zbl 0653.32013
[007] [8] B. Jöricke, Envelopes of holomorphy and CR-invariant subsets of CR-manifolds, C. R. Acad. Sci. Paris Sér. I 315 (1992), 407-411. | Zbl 0767.32010
[008] [9] B. Jöricke, Deformation of CR- manifolds, minimal points and CR-manifolds with the microlocal analytic extension property, J. Geom. Anal. 6 (1996), 555-611. | Zbl 0917.32007
[009] [10] B. Jöricke, Some remarks concerning holomorphically convex hulls and envelope of holomorphy, Math. Z. 218 (1995), 143-157. | Zbl 0816.32011
[010] [11] B. Jöricke, Boundaries of singularity sets, removable singularities, and CR-invariant subsets of CR-manifolds, preprint, 1996. | Zbl 0964.32031
[011] [12] G. Lupacciolu, A theorem on holomorphic extension of CR-functions, Pacific J. Math. 124 (1986), 177-191. | Zbl 0597.32014
[012] [13] C. Laurent-Thiébaut, Sur l'extension de fonctions CR dans une variété de Stein, Ann. Mat. Pura Appl. (4) 150 (1988), 141-151. | Zbl 0646.32010
[013] [14] J. Merker, Global minimality of generic manifolds and holomorphic extendibility of CR functions, Internat. Math. Res. Notices 8 (1994), 329-342. | Zbl 0815.32007
[014] [15] J. Merker, On removable singularities for CR functions in higher codimension, ibid. 1 (1997), 21-56. | Zbl 0880.32009
[015] [16] J. Merker and E. Porten, On removable singularities for integrable CR functions, preprint, 1997; available at: http://www.dmi.ens.fr/EDITION/preprints. | Zbl 0935.32010
[016] [17] E. Porten, thesis, Berlin, 1996.
[017] [18] E. Porten, A Hartogs-Bochner type theorem for continuous CR mappings, manuscript, 1997.
[018] [19] F. Sarkis, CR meromorphic extension and the non embedding of the Andreotti-Rossi CR structure in the projective space, Internat. J. Math., to appear. | Zbl 1110.32308
[019] [20] B. Shiffman, Separately meromorphic mappings into Kähler manifolds, in: Contributions to Complex Analysis and Analytic Geometry, Aspects of Math. E26, Vieweg, 1994, 243-250. | Zbl 0873.32024
[020] [21] J.-M. Trépreau, Sur la propagation des singularités dans les variétés CR, Bull. Soc. Math. France 118 (1990), 403-450.
[021] [22] A. E. Tumanov, Connections and propagation of analyticity for CR functions, Duke Math. J. 73 (1994), 1-24. | Zbl 0801.32005