Tuboids are tube-like domains which have a totally real edge and look asymptotically near the edge as a local tube over a convex cone. For such domains we state an analogue of Cartan’s theorem on the holomorphic convexity of totally real domains in .
@article{bwmeta1.element.bwnjournal-article-apmv70z1p157bwm, author = {I. V. Maresin and A. G. Sergeev}, title = {A microlocal version of Cartan-Grauert's theorem}, journal = {Annales Polonici Mathematici}, volume = {69}, year = {1998}, pages = {157-162}, zbl = {0937.32016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv70z1p157bwm} }
I. V. Maresin; A. G. Sergeev. A microlocal version of Cartan-Grauert's theorem. Annales Polonici Mathematici, Tome 69 (1998) pp. 157-162. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv70z1p157bwm/
[000] [1] J. Bros and D. Iagolnitzer, Tuboïdes et structure analytique des distributions, Sém. Goulaouic-Lions-Schwartz, nos. 16, 18, 1975. | Zbl 0333.46028
[001] [2] J. Bros and D. Iagolnitzer, Tuboïdes dans et généralisation d’un théorème de Grauert, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 3, 49-72. | Zbl 0336.32003
[002] [3] H. Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France 85 (1957), 77-100. | Zbl 0083.30502
[003] [4] H. Grauert, On Levi's problem and the embedding of real analytic manifolds, Ann. of Math. (2) 68 (1958), 460-472. | Zbl 0108.07804
[004] [5] I. V. Maresin, Cartan-Grauert's theorem for tuboids with a curvilinear edge, Math. Notes 64 (1998), no. 6. | Zbl 0952.32001