Complex Plateau problem in non-Kähler manifolds
S. Ivashkovich
Annales Polonici Mathematici, Tome 69 (1998), p. 131-143 / Harvested from The Polish Digital Mathematics Library

We consider the complex Plateau problem for strongly pseudoconvex contours in non-Kähler manifolds. We give a necessary and sufficient condition for the existence of solution in the class of manifolds carrying pluriclosed metric forms and propose a conjecture for the general case.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:262589
@article{bwmeta1.element.bwnjournal-article-apmv70z1p131bwm,
     author = {S. Ivashkovich},
     title = {Complex Plateau problem in non-K\"ahler manifolds},
     journal = {Annales Polonici Mathematici},
     volume = {69},
     year = {1998},
     pages = {131-143},
     zbl = {0929.32010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv70z1p131bwm}
}
S. Ivashkovich. Complex Plateau problem in non-Kähler manifolds. Annales Polonici Mathematici, Tome 69 (1998) pp. 131-143. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv70z1p131bwm/

[000] [Ba] D. Barlet, Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie in: Séminaire Norguet IX, Lecture Notes in Math. 482, Springer, 1975, 1-158.

[001] [Db] P. Dolbeault, Geometric measure theory and the calculus of variations in: Proc. Sympos. Pure Math. 44, Amer. Math. Soc., 1986, 171-205.

[002] [Db-H] P. Dolbeault et G. Henkin, Surfaces de Riemann de bord donné dans n in: Contributions to Complex Analysis and Analytic Geometry, H. Skoda et al. (eds.), Aspects of Math. E26, Vieweg, 1994, 163-187.

[003] [Ga] P. Gauduchon, Les métriques standard d'une surface à premier nombre de Betti pair Astérisque 126 (1985), 129-135.

[004] [H] R. Harvey, Holomorphic chains and their boundaries in: Proc. Sympos. Pure Math. 30, Part 1, Amer. Math. Soc., 1977, 307-382.

[005] [H-L] R. Harvey and H. Lawson, An intrinsic characterization of Kähler manifolds Invent. Math. 74 (1983), 169-198. | Zbl 0553.32008

[006] [H-L] G. Henkin and J. Leiterer, Theory of Functions on Complex Manifolds Monographs in Math., Birkhäuser, 1984.

[007] [Iv-1] S. Ivashkovich, The Hartogs-type extension theorem for the meromorphic maps into compact Kähler manifolds Invent. Math. 109 (1992), 47-54. | Zbl 0738.32008

[008] [Iv-2] S. Ivashkovich, Continuity principle and extension properties of meromorphic mappings with values in non Kähler manifolds MSRI Preprint No. 1997-033, xxx.math-archive: math.CV/9704219.

[009] [Iv-3] S. Ivashkovich, One example in concern with extension and separate analyticity properties of meromorphic mappings xxx.math-archive: math.CV/9804009, to appear in Amer. J. Math.

[010] [Ka-1] M. Kato, Examples on an extension problem of holomorphic maps and holomorphic 1-dimensional foliations Tokyo J. Math. 13 (1990), 139-146. | Zbl 0718.32014

[011] [Ka-2] M. Kato, Compact quotient manifolds of domains in a complex 3-dimensional projective space and the Lebesgue measure of limit sets ibid. 19 (1996), 99-119. | Zbl 0864.57034

[012] [Ka-3] M. Kato, Compact complex manifolds containing 'global' spherical shells I in: Proc. Internat. Sympos. Algebraic Geometry, Kyoto, 1977, 45-84.

[013] [Kl] M. Klimek, Pluripotential Theory London Math. Soc. Monographs (N.S.) 6, Cambridge Univ. Press, 1991.

[014] [Lg] P. Lelong, Plurisubharmonic Functions and Positive Differential Forms Gordon and Breach, New York, 1969.

[015] [Lv] E. Levi, Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse Ann. Mat. Pura Appl. 17 (1910), 61-87.

[016] [Re] R. Remmert, Holomorphe und meromorphe Abbildungen komplexer Räume Math. Ann. 133 (1957), 328-370. | Zbl 0079.10201

[017] [Rs] H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconvex boundary in: Proc. Conf. Complex Analysis (Minneapolis, 1964), Springer, 1965, 242-256.