We compute the Bergman kernel functions of the unbounded domains , where . It is also shown that these kernel functions have no zeros in . We use a method from harmonic analysis to reduce the computation of the 2-dimensional case to the problem of finding the kernel function of a weighted space of entire functions in one complex variable.
@article{bwmeta1.element.bwnjournal-article-apmv70z1p109bwm, author = {Friedrich Haslinger}, title = {The Bergman kernel functions of certain unbounded domains}, journal = {Annales Polonici Mathematici}, volume = {69}, year = {1998}, pages = {109-115}, zbl = {0929.32005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv70z1p109bwm} }
Friedrich Haslinger. The Bergman kernel functions of certain unbounded domains. Annales Polonici Mathematici, Tome 69 (1998) pp. 109-115. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv70z1p109bwm/
[000] [BFS] H. P. Boas, S. Fu and E. J. Straube, The Bergman kernel function: Explicit formulas and zeros, Proc. Amer. Math. Soc. (to appear). | Zbl 0919.32013
[001] [BL] A. Bonami and N. Lohoué, Projecteurs de Bergman et Szegő pour une classe de domaines faiblement pseudo-convexes et estimations , Compositio Math. 46 (1982), 159-226. | Zbl 0538.32005
[002] [BSY] H. P. Boas, E. J. Straube and J. Yu, Boundary limits of the Bergman kernel and metric, Michigan Math. J. 42 (1995), 449-462.
[003] [D'A] J. P. D'Angelo, An explicit computation of the Bergman kernel function, J. Geom. Anal. 4 (1994), 23-34.
[004] [D] K. P. Diaz, The Szegő kernel as a singular integral kernel on a family of weakly pseudoconvex domains, Trans. Amer. Math. Soc. 304 (1987), 147-170. | Zbl 0659.42009
[005] [DO] K. Diederich and T. Ohsawa, On the parameter dependence of solutions to the ∂̅-equation, Math. Ann. 289 (1991), 581-588. | Zbl 0789.35119
[006] [FH1] G. Francsics and N. Hanges, Explicit formulas for the Szegő kernel on certain weakly pseudoconvex domains, Proc. Amer. Math. Soc. 123 (1995), 3161-3168. | Zbl 0848.32018
[007] [FH2] G. Francsics and N. Hanges, The Bergman kernel of complex ovals and multivariable hypergeometric functions, J. Funct. Anal. 142 (1996), 494-510. | Zbl 0871.32016
[008] [FH3] G. Francsics and N. Hanges, Asymptotic behavior of the Bergman kernel and hypergeometric functions, in: Contemp. Math. (to appear). | Zbl 0889.32025
[009] [GS] P. C. Greiner and E. M. Stein, On the solvability of some differential operators of type , Proc. Internat. Conf., (Cortona, 1976-1977), Scuola Norm. Sup. Pisa, 1978, 106-165.
[010] [Han] N. Hanges, Explicit formulas for the Szegő kernel for some domains in , J. Funct. Anal. 88 (1990), 153-165. | Zbl 0701.32012
[011] [Has1] F. Haslinger, Szegő kernels of certain unbounded domains in , Rév. Rou- maine Math. Pures Appl. 39 (1994), 914-926.
[012] [Has2] F. Haslinger, Singularities of the Szegő kernel for certain weakly pseudoconvex domains in , J. Funct. Anal. 129 (1995), 406-427. | Zbl 0853.32023
[013] [Has3] F. Haslinger, Bergman and Hardy spaces on model domains, Illinois J. Math. (to appear).
[014] [He] P. Henrici, Applied and Computational Complex Analysis, II, Wiley, New York, 1977.
[015] [K] H. Kang, -equations on certain unbounded weakly pseudoconvex domains, Trans. Amer. Math. Soc. 315 (1989), 389-413.
[016] [Kr] S. G. Krantz, Function Theory of Several Complex Variables, Wadsworth & Brooks/Cole, Pacific Grove, Calif., 1992.
[017] [McN1] J. McNeal, Boundary behavior of the Bergman kernel function in , Duke Math. J. 58 (1989), 499-512.
[018] [McN2] J. McNeal, Local geometry of decoupled pseudoconvex domains, in: Complex Analysis, Aspects of Math. E17, K. Diederich (ed.), Vieweg 1991, 223-230. | Zbl 0747.32019
[019] [McN3] J. McNeal, Estimates on the Bergman kernels on convex domains, Adv. Math. 109 (1994), 108-139. | Zbl 0816.32018
[020] [N] A. Nagel, Vector fields and nonisotropic metrics, in: Beijing Lectures in Harmonic Analysis, E. M. Stein (ed.), Princeton Univ. Press, Princeton, N.J., 1986, 241-306.
[021] [NRSW1] A. Nagel, J. P. Rosay, E. M. Stein and S. Wainger, Estimates for the Bergman and Szegő kernels in certain weakly pseudoconvex domains, Bull. Amer. Math. Soc. 18 (1988), 55-59. | Zbl 0642.32014
[022] [NRSW2] A. Nagel, J. P. Rosay, E. M. Stein and S. Wainger, Estimates for the Bergman and Szegő kernels in , Ann. of Math. 129 (1989), 113-149. | Zbl 0667.32016
[023] [OPY] K. Oeljeklaus, P. Pflug and E. H. Youssfi, The Bergman kernel of the minimal ball and applications, Ann. Inst. Fourier (Grenoble) 47 (1997), 915-928. | Zbl 0873.32025
[024] [R] M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer, 1986. | Zbl 0591.32002
[025] [S] E. M. Stein, Harmonic Analysis. Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993. | Zbl 0821.42001
[026] [T] B. A. Taylor, On weighted polynomial approximation of entire functions, Pacific J. Math. 36 (1971), 523-539. | Zbl 0211.14904