We prove a recent conjecture of S. Lvovski concerning the periodicity behaviour of top Betti numbers of general finite subsets with large cardinality of an irreducible curve C ⊂ ℙⁿ.
@article{bwmeta1.element.bwnjournal-article-apmv69z3p283bwm, author = {E. Ballico}, title = {On the graded Betti numbers for large finite subsets of curves}, journal = {Annales Polonici Mathematici}, volume = {69}, year = {1998}, pages = {283-286}, zbl = {0934.14025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv69z3p283bwm} }
E. Ballico. On the graded Betti numbers for large finite subsets of curves. Annales Polonici Mathematici, Tome 69 (1998) pp. 283-286. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv69z3p283bwm/
[000] [1] M. Green, Koszul cohomology, J. Differential Geom. 19 (1984), 125-171.
[001] [2] M. Green, Koszul cohomology and geometry, in: Lectures on Riemann Surfaces (Trieste, 1987), World Sci., 1989, 177-200.
[002] [3] M. Green and R. Lazarsfeld, Some results on the syzygies of finite sets and algebraic curves, Compositio Math. 67 (1988), 301-314. | Zbl 0671.14010
[003] [4] R. Lazarsfeld, A sampling of vector bundles techniques in the study of linear series, in: Lectures on Riemann Surfaces (Trieste, 1987), World Sci., 1989, 500-559. | Zbl 0800.14003
[004] [5] S. Lvovski, On graded Betti numbers for finite subsets of curves, preprint 97-31, Max-Planck-Institut.