A formal solution of a nonlinear equation P(D)u = g(u) in 2 variables is constructed using the Laplace transformation and a convolution equation. We assume some conditions on the characteristic set Char P.
@article{bwmeta1.element.bwnjournal-article-apmv69z3p271bwm, author = {Maria E. Pli\'s}, title = {Convolution equations in the space of Laplace distributions}, journal = {Annales Polonici Mathematici}, volume = {69}, year = {1998}, pages = {271-281}, zbl = {0923.35047}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv69z3p271bwm} }
Maria E. Pliś. Convolution equations in the space of Laplace distributions. Annales Polonici Mathematici, Tome 69 (1998) pp. 271-281. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv69z3p271bwm/
[000] [B] L. Bieberbach, und die automorphen Funktionen, Math. Ann. 77 (1916), 173-212.
[001] [P] M. E. Pliś, Poincaré theorem and nonlinear PDE's, Ann. Polon. Math. 69 (1998), 99-105. | Zbl 1101.35308
[002] [P-Z] M. E. Pliś and B. Ziemian, Borel resummation of formal solutions to nonlinear Laplace equations in variables, Ann. Polon. Math. 67 (1997), 31-41. | Zbl 0882.35025
[003] [Po] A. G. Popov, The non-euclidean geometry and differential equations, in: Banach Center Publ. 33, Inst. Math., Polish Acad. Sci., 1996, 297-308. | Zbl 0851.35119
[004] [S-Z] Z. Szmydt and B. Ziemian, Laplace distributions and hyperfunctions on ℝ̅ⁿ₊, J. Math. Sci. Univ. Tokyo 5 (1998), 41-74. | Zbl 0917.46038