Convolution equations in the space of Laplace distributions
Maria E. Pliś
Annales Polonici Mathematici, Tome 69 (1998), p. 271-281 / Harvested from The Polish Digital Mathematics Library

A formal solution of a nonlinear equation P(D)u = g(u) in 2 variables is constructed using the Laplace transformation and a convolution equation. We assume some conditions on the characteristic set Char P.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:270603
@article{bwmeta1.element.bwnjournal-article-apmv69z3p271bwm,
     author = {Maria E. Pli\'s},
     title = {Convolution equations in the space of Laplace distributions},
     journal = {Annales Polonici Mathematici},
     volume = {69},
     year = {1998},
     pages = {271-281},
     zbl = {0923.35047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv69z3p271bwm}
}
Maria E. Pliś. Convolution equations in the space of Laplace distributions. Annales Polonici Mathematici, Tome 69 (1998) pp. 271-281. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv69z3p271bwm/

[000] [B] L. Bieberbach, Δu=eu und die automorphen Funktionen, Math. Ann. 77 (1916), 173-212.

[001] [P] M. E. Pliś, Poincaré theorem and nonlinear PDE's, Ann. Polon. Math. 69 (1998), 99-105. | Zbl 1101.35308

[002] [P-Z] M. E. Pliś and B. Ziemian, Borel resummation of formal solutions to nonlinear Laplace equations in 2 variables, Ann. Polon. Math. 67 (1997), 31-41. | Zbl 0882.35025

[003] [Po] A. G. Popov, The non-euclidean geometry and differential equations, in: Banach Center Publ. 33, Inst. Math., Polish Acad. Sci., 1996, 297-308. | Zbl 0851.35119

[004] [S-Z] Z. Szmydt and B. Ziemian, Laplace distributions and hyperfunctions on ℝ̅ⁿ₊, J. Math. Sci. Univ. Tokyo 5 (1998), 41-74. | Zbl 0917.46038