Multiple positive solutions of a nonlinear fourth order periodic boundary value problem
Lingbin Kong ; Daqing Jiang
Annales Polonici Mathematici, Tome 69 (1998), p. 265-270 / Harvested from The Polish Digital Mathematics Library

The fourth order periodic boundary value problem u(4)-mu+F(t,u)=0, 0 < t < 2π, with u(i)(0)=u(i)(2π), i = 0,1,2,3, is studied by using the fixed point index of mappings in cones, where F is a nonnegative continuous function and 0 < m < 1. Under suitable conditions on F, it is proved that the problem has at least two positive solutions if m ∈ (0,M), where M is the smallest positive root of the equation tan mπ = -tanh mπ, which takes the value 0.7528094 with an error of ±10-7.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:270758
@article{bwmeta1.element.bwnjournal-article-apmv69z3p265bwm,
     author = {Lingbin Kong and Daqing Jiang},
     title = {Multiple positive solutions of a nonlinear fourth order periodic boundary value problem},
     journal = {Annales Polonici Mathematici},
     volume = {69},
     year = {1998},
     pages = {265-270},
     zbl = {0918.34024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv69z3p265bwm}
}
Lingbin Kong; Daqing Jiang. Multiple positive solutions of a nonlinear fourth order periodic boundary value problem. Annales Polonici Mathematici, Tome 69 (1998) pp. 265-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv69z3p265bwm/

[000] [1] A. Cabada, The method of lower and upper solutions for second, third, fourth and higher order boundary value problems, J. Math. Anal. Appl. 185 (1994), 302-320. | Zbl 0807.34023

[001] [2] A. Cabada and J. J. Nieto, A generalization of the monotone iterative technique for nonlinear second-order periodic boundary value problems, J. Math. Anal. Appl. 151 (1990), 181-189. | Zbl 0719.34039

[002] [3] L. H. Erbe, S. C. Hu and H. Y. Wang, Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl. 184 (1994), 640-648. | Zbl 0805.34021

[003] [4] W. J. Gao and J. Y. Wang, On a nonlinear second order periodic boundary value problem with Carathéodory functions, Ann. Polon. Math. 62 (1995), 283-291. | Zbl 0839.34031

[004] [5] D. Q. Jiang and J. Y. Wang, A generalized periodic boundary value problem for the one-dimensional p-Laplacian, Ann. Polon. Math. 65 (1997), 265-270. | Zbl 0868.34015

[005] [6] V. Šeda, J. J. Nieto and M. Gera, Periodic boundary value problems for nonlinear higher order ordinary differential equations, Appl. Math. Comput. 48 (1992), 71-82. | Zbl 0748.34014

[006] [7] M. X. Wang, A. Cabada and J. J. Nieto, Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions, Ann. Polon. Math. 58 (1993), 221-235. | Zbl 0789.34027