On certain subclasses of multivalently meromorphic close-to-convex maps
K. S. Padmanabhan
Annales Polonici Mathematici, Tome 69 (1998), p. 251-263 / Harvested from The Polish Digital Mathematics Library

Let Mₚ denote the class of functions f of the form f(z)=1/zp+k=0azk, p a positive integer, in the unit disk E = |z| < 1, f being regular in 0 < |z| < 1. Let Ln,p(α)=f:fM,Re-(zp+1/p)(Df)'>α, α < 1, where Df=(zn+pf(z))(n)/(zpn!). Results on Ln,p(α) are derived by proving more general results on differential subordination. These results reduce, by putting p =1, to the recent results of Al-Amiri and Mocanu.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:270452
@article{bwmeta1.element.bwnjournal-article-apmv69z3p251bwm,
     author = {K. S. Padmanabhan},
     title = {On certain subclasses of multivalently meromorphic close-to-convex maps},
     journal = {Annales Polonici Mathematici},
     volume = {69},
     year = {1998},
     pages = {251-263},
     zbl = {0922.30016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv69z3p251bwm}
}
K. S. Padmanabhan. On certain subclasses of multivalently meromorphic close-to-convex maps. Annales Polonici Mathematici, Tome 69 (1998) pp. 251-263. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv69z3p251bwm/

[000] [1] H. Al-Amiri and P. T. Mocanu, On certain subclasses of meromorphic close-to-convex functions, Bull. Math. Soc. Sci. Math. Roumanie 38 (86) (1994), 3-15.

[001] [2] A. E. Livingston, Meromorphic multivalent close-to-convex functions, Trans. Amer. Math. Soc. 119 (1965), 167-177. | Zbl 0154.08103

[002] [3] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), 289-305. | Zbl 0367.34005

[003] [4] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 167-171. | Zbl 0439.30015

[004] [5] S. S. Miller and P. T. Mocanu, The theory and applications of second order differential subordinations, Studia Univ. Babeş-Bolyai Math. 34 (1989), 3-33. | Zbl 0900.30031

[005] [6] C. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.

[006] [7] S. Ruscheweyh, Eine Invarianzeigenschaft der Basilevič-Funktionen, Math. Z. 134 (1973), 215-219.