Let Mₚ denote the class of functions f of the form , p a positive integer, in the unit disk E = |z| < 1, f being regular in 0 < |z| < 1. Let , α < 1, where . Results on are derived by proving more general results on differential subordination. These results reduce, by putting p =1, to the recent results of Al-Amiri and Mocanu.
@article{bwmeta1.element.bwnjournal-article-apmv69z3p251bwm, author = {K. S. Padmanabhan}, title = {On certain subclasses of multivalently meromorphic close-to-convex maps}, journal = {Annales Polonici Mathematici}, volume = {69}, year = {1998}, pages = {251-263}, zbl = {0922.30016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv69z3p251bwm} }
K. S. Padmanabhan. On certain subclasses of multivalently meromorphic close-to-convex maps. Annales Polonici Mathematici, Tome 69 (1998) pp. 251-263. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv69z3p251bwm/
[000] [1] H. Al-Amiri and P. T. Mocanu, On certain subclasses of meromorphic close-to-convex functions, Bull. Math. Soc. Sci. Math. Roumanie 38 (86) (1994), 3-15.
[001] [2] A. E. Livingston, Meromorphic multivalent close-to-convex functions, Trans. Amer. Math. Soc. 119 (1965), 167-177. | Zbl 0154.08103
[002] [3] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), 289-305. | Zbl 0367.34005
[003] [4] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 167-171. | Zbl 0439.30015
[004] [5] S. S. Miller and P. T. Mocanu, The theory and applications of second order differential subordinations, Studia Univ. Babeş-Bolyai Math. 34 (1989), 3-33. | Zbl 0900.30031
[005] [6] C. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[006] [7] S. Ruscheweyh, Eine Invarianzeigenschaft der Basilevič-Funktionen, Math. Z. 134 (1973), 215-219.