Markov operators on the space of vector measures; coloured fractals
Karol Baron ; Andrzej Lasota
Annales Polonici Mathematici, Tome 69 (1998), p. 217-234 / Harvested from The Polish Digital Mathematics Library

We consider the family 𝓜 of measures with values in a reflexive Banach space. In 𝓜 we introduce the notion of a Markov operator and using an extension of the Fortet-Mourier norm we show some criteria of the asymptotic stability. Asymptotically stable Markov operators can be used to construct coloured fractals.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:270485
@article{bwmeta1.element.bwnjournal-article-apmv69z3p217bwm,
     author = {Karol Baron and Andrzej Lasota},
     title = {Markov operators on the space of vector measures; coloured fractals},
     journal = {Annales Polonici Mathematici},
     volume = {69},
     year = {1998},
     pages = {217-234},
     zbl = {0928.28003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv69z3p217bwm}
}
Karol Baron; Andrzej Lasota. Markov operators on the space of vector measures; coloured fractals. Annales Polonici Mathematici, Tome 69 (1998) pp. 217-234. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv69z3p217bwm/

[000] [1] M. F. Barnsley, Fractals Everywhere, Academic Press, 1988. | Zbl 0691.58001

[001] [2] M. F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A 399 (1985), 243-275. | Zbl 0588.28002

[002] [3] J. Diestel and J. J. Uhl, Jr., Vector Measures, Amer. Math. Soc., 1977.

[003] [4] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747. | Zbl 0598.28011

[004] [5] A. Lasota, From fractals to stochastic differential equations, in: P. Garbaczewski, M. Wolf and A. Weron (eds.), Chaos - The Interplay Between Stochastic and Deterministic Behaviour, Springer, 1995, 235-255. | Zbl 0835.60058

[005] [6] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics, Springer, 1994.

[006] [7] A. Lasota and J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41-77. | Zbl 0804.47033

[007] [8] A. A. Markov, Extension of the law of large numbers for dependent variables, Izv. Fiz.-Mat. Obshch. Kazansk. Univ. (2) 15 (1906), 135-156 (in Russian).

[008] [9] E. Nummelin, General Irreducible Markov Chains and Non-negative Operators, Cambridge Univ. Press, 1984. | Zbl 0551.60066

[009] [10] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, 1967. | Zbl 0153.19101

[010] [11] S. T. Rachev, Probability Metrics and the Stability of Stochastic Models, Wiley, 1991. | Zbl 0744.60004