We define natural first order Lagrangians for immersions of Riemannian manifolds and we prove a bijective correspondence between such Lagrangians and the symmetric functions on an open subset of m-dimensional Euclidean space.
@article{bwmeta1.element.bwnjournal-article-apmv69z3p207bwm, author = {Jerzy J. Konderak}, title = {Natural first order Lagrangians for immersions}, journal = {Annales Polonici Mathematici}, volume = {69}, year = {1998}, pages = {207-215}, zbl = {0923.58016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv69z3p207bwm} }
Jerzy J. Konderak. Natural first order Lagrangians for immersions. Annales Polonici Mathematici, Tome 69 (1998) pp. 207-215. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv69z3p207bwm/
[000] [ES] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. | Zbl 0122.40102
[001] [G] G. Glaeser, Fonctions composées différentiables, Ann. of Math. (2) 77 (1963), 193-209. | Zbl 0106.31302
[002] [H] M. W. Hirsch, Differential Topology, Grad. Texts in Math. 33, Springer, New York, 1976.
[003] [KMS] I. Kolar, P. W. Michor and J. Slovak, Natural Operations in Differential Geometry, Springer, New York, 1993. | Zbl 0782.53013
[004] [K] J. J. Konderak, On natural first order Lagrangians, Bull. London Math. Soc. 23 (1991), 169-174. | Zbl 0754.58008
[005] [M] P. W. Michor, Manifolds of Differentiable Mappings, Shiva Math. Ser., 1980. | Zbl 0433.58001
[006] [P₁] R. S. Palais, Foundations of Global Non-linear Analysis, Benjamin, New York, 1968. | Zbl 0164.11102
[007] [P₂] R. S. Palais, Applications of the symmetric criticality principle in mathematical physics and differential geometry, in: Proc. 1981 Symposium on Diff. Geometry and Diff. Equations, C. H. Gu (eds.), Science Press, Beijing, 1984, 247-302. | Zbl 0792.53079