Effective formulas for invariant functions - case of elementary Reinhardt domains
Peter Pflug ; Włodzimierz Zwonek
Annales Polonici Mathematici, Tome 69 (1998), p. 175-196 / Harvested from The Polish Digital Mathematics Library

We find effective formulas for the invariant functions, appearing in the theory of several complex variables, of the elementary Reinhardt domains. This gives us the first example of a large family of domains for which the functions are calculated explicitly.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:270362
@article{bwmeta1.element.bwnjournal-article-apmv69z2p175bwm,
     author = {Peter Pflug and W\l odzimierz Zwonek},
     title = {Effective formulas for invariant functions - case of elementary Reinhardt domains},
     journal = {Annales Polonici Mathematici},
     volume = {69},
     year = {1998},
     pages = {175-196},
     zbl = {0926.32015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv69z2p175bwm}
}
Peter Pflug; Włodzimierz Zwonek. Effective formulas for invariant functions - case of elementary Reinhardt domains. Annales Polonici Mathematici, Tome 69 (1998) pp. 175-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv69z2p175bwm/

[000] [A] K. Azukawa, Two intrinsic pseudo-metrics with pseudoconvex indicatrices and starlike circular domains, J. Math. Soc. Japan 38 (1986), 627-647. | Zbl 0607.32015

[001] [BFKKMP] B. E. Blank, D. Fan, D. Klein, S. G. Krantz, D. Ma and M.-Y. Pang, The Kobayashi metric of a complex ellipsoid in ℂ², Experiment. Math. 1 (1992), 47-55. | Zbl 0783.32012

[002] [C] C. Carathéodory, Über eine spezielle Metrik die in der Theorie der analytischen Funktionen auftritt, Atti Pontifica Acad. Sci. Nuovi Lincei 80 (1927), 135-141. | Zbl 53.0314.01

[003] [E] A. Edigarian, On extremal mappings in complex ellipsoids, Ann. Polon. Math. 62 (1995), 83-96. | Zbl 0851.32025

[004] [Ge] G. Gentili, Regular complex geodesics in the domain Dₙ = {(z₁,...,zₙ) ∈ ℂⁿ: |z₁|+...+|zₙ| < 1}, in: Lecture Notes in Math. 1277, Springer, 1987, 35-45.

[005] [Gi] B. Gilligan, On the Kobayashi pseudometric reduction of homogeneous spaces, Canad. Math. Bull. 31 (1988), 45-51. | Zbl 0617.32037

[006] [HW] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford Sci. Publ., 1978.

[007] [HD] V. Z. Hristov and T. Davidov, Examples of typical Carathéodory and Kobayashi pseudodistances, C. R. Acad. Bulgare Sci. 39 (1986), 23-25. | Zbl 0595.32035

[008] [JP1] M. Jarnicki and P. Pflug, Some remarks on the product property, in: Proc. Sympos. Pure Math. 52 (Part 2), Amer. Math. Soc., 1991, 263-272. | Zbl 0747.32018

[009] [JP2] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 1993. | Zbl 0789.32001

[010] [JPZ] M. Jarnicki, P. Pflug and R. Zeinstra, Geodesics for convex complex ellipsoids, Ann. Scuola Norm. Sup. Pisa 20 (1993), 535-543. | Zbl 0812.32010

[011] [Kl1] M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985), 231-240. | Zbl 0584.32037

[012] [Kl2] M. Klimek, Pluripotential Theory, Oxford Univ. Press, 1991.

[013] [Ko1] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Pure and Appl. Math. 2, M. Dekker, 1970.

[014] [Ko2] S. Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), 357-416. | Zbl 0346.32031

[015] [L1] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 327-479.

[016] [L2] L. Lempert, Intrinsic distances and holomorphic retracts, Complex Analysis and Applications (Varna, 1981), Publ. House Bulgar. Acad. Sci., Sophia, 1984, 341-364.

[017] [N] S. Nivoche, Pluricomplex Green function, capacitative notions and approximation problems in ℂⁿ, Indiana Univ. Math. J. 44 (1995), 489-510. | Zbl 0846.31008

[018] [Pa] M.-Y. Pang, Smoothness of the Kobayashi metric of non-convex domains, Internat. J. Math. 4 (1993), 953-987. | Zbl 0795.32008

[019] [PZ] P. Pflug and W. Zwonek, The Kobayashi metric for non-convex complex ellipsoids, Complex Variables 29 (1996), 59-71. | Zbl 0843.32015

[020] [R] H.-J. Reiffen, Die Carathéodory Distanz und ihre zugehörige Differentialmetrik, Math. Ann. 161 (1965), 315-324. | Zbl 0141.08803