We find effective formulas for the invariant functions, appearing in the theory of several complex variables, of the elementary Reinhardt domains. This gives us the first example of a large family of domains for which the functions are calculated explicitly.
@article{bwmeta1.element.bwnjournal-article-apmv69z2p175bwm, author = {Peter Pflug and W\l odzimierz Zwonek}, title = {Effective formulas for invariant functions - case of elementary Reinhardt domains}, journal = {Annales Polonici Mathematici}, volume = {69}, year = {1998}, pages = {175-196}, zbl = {0926.32015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv69z2p175bwm} }
Peter Pflug; Włodzimierz Zwonek. Effective formulas for invariant functions - case of elementary Reinhardt domains. Annales Polonici Mathematici, Tome 69 (1998) pp. 175-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv69z2p175bwm/
[000] [A] K. Azukawa, Two intrinsic pseudo-metrics with pseudoconvex indicatrices and starlike circular domains, J. Math. Soc. Japan 38 (1986), 627-647. | Zbl 0607.32015
[001] [BFKKMP] B. E. Blank, D. Fan, D. Klein, S. G. Krantz, D. Ma and M.-Y. Pang, The Kobayashi metric of a complex ellipsoid in ℂ², Experiment. Math. 1 (1992), 47-55. | Zbl 0783.32012
[002] [C] C. Carathéodory, Über eine spezielle Metrik die in der Theorie der analytischen Funktionen auftritt, Atti Pontifica Acad. Sci. Nuovi Lincei 80 (1927), 135-141. | Zbl 53.0314.01
[003] [E] A. Edigarian, On extremal mappings in complex ellipsoids, Ann. Polon. Math. 62 (1995), 83-96. | Zbl 0851.32025
[004] [Ge] G. Gentili, Regular complex geodesics in the domain Dₙ = {(z₁,...,zₙ) ∈ ℂⁿ: |z₁|+...+|zₙ| < 1}, in: Lecture Notes in Math. 1277, Springer, 1987, 35-45.
[005] [Gi] B. Gilligan, On the Kobayashi pseudometric reduction of homogeneous spaces, Canad. Math. Bull. 31 (1988), 45-51. | Zbl 0617.32037
[006] [HW] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford Sci. Publ., 1978.
[007] [HD] V. Z. Hristov and T. Davidov, Examples of typical Carathéodory and Kobayashi pseudodistances, C. R. Acad. Bulgare Sci. 39 (1986), 23-25. | Zbl 0595.32035
[008] [JP1] M. Jarnicki and P. Pflug, Some remarks on the product property, in: Proc. Sympos. Pure Math. 52 (Part 2), Amer. Math. Soc., 1991, 263-272. | Zbl 0747.32018
[009] [JP2] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 1993. | Zbl 0789.32001
[010] [JPZ] M. Jarnicki, P. Pflug and R. Zeinstra, Geodesics for convex complex ellipsoids, Ann. Scuola Norm. Sup. Pisa 20 (1993), 535-543. | Zbl 0812.32010
[011] [Kl1] M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985), 231-240. | Zbl 0584.32037
[012] [Kl2] M. Klimek, Pluripotential Theory, Oxford Univ. Press, 1991.
[013] [Ko1] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Pure and Appl. Math. 2, M. Dekker, 1970.
[014] [Ko2] S. Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), 357-416. | Zbl 0346.32031
[015] [L1] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 327-479.
[016] [L2] L. Lempert, Intrinsic distances and holomorphic retracts, Complex Analysis and Applications (Varna, 1981), Publ. House Bulgar. Acad. Sci., Sophia, 1984, 341-364.
[017] [N] S. Nivoche, Pluricomplex Green function, capacitative notions and approximation problems in ℂⁿ, Indiana Univ. Math. J. 44 (1995), 489-510. | Zbl 0846.31008
[018] [Pa] M.-Y. Pang, Smoothness of the Kobayashi metric of non-convex domains, Internat. J. Math. 4 (1993), 953-987. | Zbl 0795.32008
[019] [PZ] P. Pflug and W. Zwonek, The Kobayashi metric for non-convex complex ellipsoids, Complex Variables 29 (1996), 59-71. | Zbl 0843.32015
[020] [R] H.-J. Reiffen, Die Carathéodory Distanz und ihre zugehörige Differentialmetrik, Math. Ann. 161 (1965), 315-324. | Zbl 0141.08803