We study the existence and multiplicity of positive solutions of the nonlinear equation u''(x) + λh(x)f(u(x)) = 0 subject to nonlinear boundary conditions. The method of upper and lower solutions and degree theory arguments are used.
@article{bwmeta1.element.bwnjournal-article-apmv69z2p155bwm, author = {D. R. Dunninger and Haiyan Wang}, title = {Multiplicity of positive solutions for a nonlinear differential equation with nonlinear boundary conditions}, journal = {Annales Polonici Mathematici}, volume = {69}, year = {1998}, pages = {155-165}, zbl = {0921.34024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv69z2p155bwm} }
D. R. Dunninger; Haiyan Wang. Multiplicity of positive solutions for a nonlinear differential equation with nonlinear boundary conditions. Annales Polonici Mathematici, Tome 69 (1998) pp. 155-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv69z2p155bwm/
[000] [1] H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971), 125-146. | Zbl 0219.35037
[001] [2] H. Amann, On the number of solutions of asymptotically superlinear two point boundary value problems, Arch. Rational Mech. Anal. 55 (1974), 207-213. | Zbl 0294.34008
[002] [3] D. S. Cohen, Generalized radiation cooling of a convex solid, J. Math. Anal. Appl. 35 (1971), 503-511. | Zbl 0218.35036
[003] [4] H. Dang, K. Schmidt and R. Shivaji, On the number of solutions of boundary value problems involving the p-Laplacian, Electron. J. Differential Equations 1 (1996), 1-9.
[004] [5] D. R. Dunninger and H. Wang, Multiplicity of positive solutions for an elliptic system, preprint. | Zbl 0959.35051
[005] [6] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Orlando, FL, 1988. | Zbl 0661.47045
[006] [7] K. S. Ha and Y. Lee, Existence of multiple positive solutions of singular boundary value problems, Nonlinear Anal. 28 (1997), 1429-1438. | Zbl 0874.34016
[007] [8] S. S. Lin, Positive radial solutions and nonradial bifurcation for semilinear elliptic equations in annular domains, J. Differential Equations 86 (1990), 367-391. | Zbl 0734.35073