Convergence of semigroups which do not converge in the Trotter-Kato-Neveu sense is considered.
@article{bwmeta1.element.bwnjournal-article-apmv69z2p107bwm, author = {Adam Bobrowski}, title = {A note on convergence of semigroups}, journal = {Annales Polonici Mathematici}, volume = {69}, year = {1998}, pages = {107-127}, zbl = {0947.47032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv69z2p107bwm} }
Adam Bobrowski. A note on convergence of semigroups. Annales Polonici Mathematici, Tome 69 (1998) pp. 107-127. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv69z2p107bwm/
[000] [1] N. H. Abdelazis, A note on convergence of linear semigroups of class (1.A), Hokkaido Math. J. 18 (1989), 513-521.
[001] [2] N. H. Abdelazis, On approximation by discrete semigroups, J. Approx. Theory 73 (1993), 253-269.
[002] [3] N. H. Abdelazis and P. R. Chernoff, Continuous and discrete semigroup approximations with applications to the Cauchy problems, J. Operator Theory 32 (1994), 331-352.
[003] [4] W. Arendt, Vector-valued Laplace transforms and Cauchy problem, Israel J. Math. 59 (1987), 321-352.
[004] [5] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), 837-852. | Zbl 0652.47022
[005] [6] C. J. K. Batty, Some Tauberian theorems related to operator theory, in: Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 21-34. | Zbl 0810.40005
[006] [7] C. J. K. Batty, Asymptotic behaviour of semigroups, in: Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 35-52. | Zbl 0818.47034
[007] [8] B. Bäumer and F. Neubrander, Laplace transform methods for evolution equations, Confer. Sem. Mat. Univ. Bari 1994, 27-60.
[008] [9] A. Bobrowski, Degenerate convergence of semigroups, Semigroup Forum 49 (1994), 303-327. | Zbl 0817.47047
[009] [10] A. Bobrowski, Examples of a pointwise convergence of semigroups, Ann. Univ. Mariae Curie-Skłodowska Sect. A 49 (1995), 15-33.
[010] [11] A. Bobrowski, Integrated semigroups and the Trotter-Kato theorem, Bull. Polish Acad. Sci. Math. 41 (1994), 297-304. | Zbl 0824.47031
[011] [12] A. Bobrowski, On the generation of non-continuous semigroups, Semigroup Forum 54 (1997), 237-252. | Zbl 0873.47025
[012] [13] A. Bobrowski, On the Yosida approximation and the Widder-Arendt representation theorem, Studia Math. 124 (1997), 281-290. | Zbl 0876.44001
[013] [14] A. Bobrowski, On approximation of (1.A) semigroups by discrete semigroups, Bull. Polish Acad. Sci. Math. 46 (1998), 141-154. | Zbl 0916.47030
[014] [15] S. Busenberg and B. Wu, Convergence theorems for integrated semigroups, Differential Integral Equations 5 (1992), 509-520. | Zbl 0786.47036
[015] [16] J. T. Cannon, Convergence criteria for a sequence of semi-groups, Appl. Anal. 5 (1975), 23-31. | Zbl 0366.47017
[016] [17] P. J. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199-205. | Zbl 0085.10201
[017] [18] P. C. Curtis and A. Figà-Talamanca, Factorization theorems for Banach algebras, in: Function Algebras, F. T. Birtel (ed.), Scott and Foresman, Chicago, 1966.
[018] [19] G. Da Prato and E. Sinestrari, Differential operators with non-dense domain, Ann. Scuola Norm. Sup. Pisa 14 (1987), 285-344. | Zbl 0652.34069
[019] [20] E. B. Davies, One-Parameter Semigroups, Academic Press, London, 1980. | Zbl 0457.47030
[020] [21] B. D. Doytchinov, W. J. Hrusa and S. J. Watson, On perturbation of differentiable semigroups, Semigroup Forum 54 (1997), 100-111. | Zbl 0867.47034
[021] [22] N. Dunford, Spectral theory, I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217. | Zbl 0063.01185
[022] [23] S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley Ser. Probab. Math. Statist., Wiley, New York, 1986.
[023] [24] A. Favini, J. A. Goldstein and S. Romanelli, Analytic semigroups on and on generated by classes of second order differential operators, preprint, 1997. | Zbl 0939.47036
[024] [25] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Math. Monographs, 1985.
[025] [26] J. A. Goldstein, C. Radin and R. E. Showalter, Convergence rates of ergodic limits for semigroups and cosine operator functions, Semigroup Forum 16 (1978), 89-95. | Zbl 0393.47004
[026] [27] E. Görlich and D. Pontzen, Approximation of operator semigroups of Oharu’s class , Tôhoku Math. J. (2) 34 (1982), 539-552. | Zbl 0498.47016
[027] [28] S. L. Gulik, T. S. Liu and A. C. M. van Rooij, Group algebra modules II, Canad. J. Math. 19 (1967), 151-173.
[028] [29] B. Hennig and F. Neubrander, On representations, inversions and approximations of Laplace transform in Banach spaces, Appl. Anal. 49 (1993), 151-170. | Zbl 0791.44002
[029] [30] E. Hewitt, The ranges of certain convolution operators, Math. Scand. 15 (1964) 147-155. | Zbl 0135.36002
[030] [31] E. Hille, On the differentiability of semigroups of operators, Acta Sci. Math. (Szeged) 12 (1950), 19-24. | Zbl 0035.35802
[031] [32] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, rev. ed., Amer. Math. Soc. Collloq. Publ. 31, Providence, R.I., 1957. | Zbl 0078.10004
[032] [33] K. Ito and H. P. Mc Kean, Jr., Diffusion Processes and Their Sample Paths, Springer, Berlin, 1965.
[033] [34] T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1966.
[034] [35] J. Kisyński, A proof of the Trotter-Kato theorem on approximation of semigroups, Colloq. Math. 18 (1967), 181-184. | Zbl 0152.33905
[035] [36] J. Kisyński, Semigroups of operators and some of their applications to partial differential equations, in: Control Theory and Topics in Functional Analysis, Vol. 3, IAEA, Vienna, 1978, 305-405.
[036] [37] T. G. Kurtz, Extensions of Trotter's operator semigroup approximation theorems, J. Funct. Anal. 3 (1969), 354-375. | Zbl 0174.18401
[037] [38] T. G. Kurtz, A general theorem on the convergence of operator semigroups, Trans. Amer. Math. Soc. 148 (1970), 23-32. | Zbl 0194.44103
[038] [39] A. Lasota and R. Rudnicki, Asymptotic behaviour of semigroups of positive operators on C(X), Bull. Polish Acad. Sci. Math. 36 (1988), 151-159. | Zbl 0676.47021
[039] [40] C. Lizama, On the convergence and approximation of integrated semigroups, J. Math. Anal. Appl. 181, (1994), 89-103. | Zbl 0815.47053
[040] [41] G. Lumer, Solutions généralisées et semi-groupes intégrés, C. R. Acad. Sci. Paris Sér. I 310 (1990), 557-582.
[041] [42] G. Lumer, A (very) direct approach to locally Lipschitz continuous integrated semigroups and some related new results oriented towards applications, via generalized solutions, in: LSU Seminar Notes in Functional Analysis and PDEs, 1990-1991, Louisiana State Univ., Baton Rouge, 1991, 88-107.
[042] [43] G. Lumer, Evolution equations: Solutions for irregular evolution problems via generalized solutions and generalized initial values. Applications to periodic shocks models, Ann. Univ. Sarav. Ser. Math. 5 (1994), no. 1, 1-102. | Zbl 0813.34057
[043] [44] Yu. I. Lyubich and V u Quôc Phóng, Asymptotic stability of linear differential equations on Banach spaces, Studia Math. 88 (1988), 37-42. | Zbl 0639.34050
[044] [45] R. Nagel, One-Parameter Semigroups of Positive Operators, Lecture Notes in Math. 1184, Springer, Berlin, 1986. | Zbl 0585.47030
[045] [46] J. Neveu, Théorie des semi-groupes de Markov, Univ. Calif. Publ. Statist. 2 (1958), 319-394. | Zbl 0173.45703
[046] [47] A. Pazy, On the differentiability and compactness of semigroups of linear operators, J. Math. Mech. 17 (1960), 1131-1141. | Zbl 0162.45903
[047] [48] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, New York, 1983.
[048] [49] R. S. Phillips, An inversion formula for the Laplace transform and semigroups of linear operators, Ann. of Math. 59 (1954), 325-356. | Zbl 0059.10704
[049] [50] M. Renardy, On the stability of differentiability of semigroups, Semigroup Forum 51 (1995), 343-346. | Zbl 0831.47030
[050] [51] G. M. Sklyar and V. Ya. Shirman, On the asymptotic stability of a linear differential equation in a Banach space, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 37 (1982), 127-132 (in Russian). | Zbl 0521.34063
[051] [52] M. Slemrod, Asymptotic behaviour of C₀ semi-groups as determined by the spectrum of the generator, Indiana Univ. Math. J. 25 (1976), 783-792. | Zbl 0313.47026
[052] [53] T. Takahashi and S. Oharu, Approximation of operator semigroups in a Banach space, Tôhoku Math. J. 24 (1972), 505-528. | Zbl 0281.47024
[053] [54] K. Yosida, On the differentiability of semigroups of linear operators, Proc. Japan Acad. 34 (1958), 337-340. | Zbl 0083.11003
[054] [55] K. Yosida, Functional Analysis, Springer, Berlin, 1968.