We consider a heat equation with a non-linear right-hand side which depends on certain Volterra-type functionals. We study the problem of existence and convergence for the method of lines by means of semi-discrete inverse formulae.
@article{bwmeta1.element.bwnjournal-article-apmv69z1p61bwm, author = {H. Leszczy\'nski}, title = {On the method of lines for a non-linear heat equation with functional dependence}, journal = {Annales Polonici Mathematici}, volume = {69}, year = {1998}, pages = {61-74}, zbl = {0916.65100}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv69z1p61bwm} }
H. Leszczyński. On the method of lines for a non-linear heat equation with functional dependence. Annales Polonici Mathematici, Tome 69 (1998) pp. 61-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv69z1p61bwm/
[000] [1] P. Besala, Finite difference approximation to the Cauchy problem for non-linear parabolic differential equations, Ann. Polon. Math. 46 (1985), 19-26. | Zbl 0601.65073
[001] [2] S. Brzychczy, Chaplygin's method for a system of nonlinear parabolic differential-functional equations, Differentsial'nye Uravneniya 22 (1986), 705-708 (in Russian). | Zbl 0613.35041
[002] [3] L. Byszewski, Monotone iterative method for a system of nonlocal initial-boundary parabolic problems, J. Math. Anal. Appl. 177 (1993), 445-458. | Zbl 0791.35058
[003] [4] Z. Kamont, On the Chaplygin method for partial differential-functional equations of the first order, Ann. Polon. Math. 38 (1980), 27-46. | Zbl 0448.34070
[004] [5] Z. Kamont and H. Leszczyński, Stability of difference equations generated by parabolic differential-functional problems, Rend. Mat. 16 (1996), 265-287. | Zbl 0859.65094
[005] [6] Z. Kamont and H. Leszczyński, Numerical solutions to the Darboux problem with the functional dependence, Georgian Math. J. (1997). | Zbl 0955.65076
[006] [7] Z. Kamont and S. Zacharek, The line method for parabolic differential-functional equations with initial boundary conditions of the Dirichlet type, Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 249-262. | Zbl 0642.35076
[007] [8] M. Krzyżański, Partial Differential Equations of Second Order, PWN, Warszawa, 1971.
[008] [9] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman Adv. Publ. Program, Pitman, Boston, 1985. | Zbl 0658.35003
[009] [10] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian); English transl.: Transl. Math. Monographs 23, Amer. Math. Soc., Providence, R.I., 1968.
[010] [11] H. Leszczyński, Convergence of one-step difference methods for nonlinear parabolic differential-functional systems with initial boundary conditions of Dirichlet type, Comment. Math. Prace Mat. 30 (1991), 357-375. | Zbl 0751.65059
[011] [12] H. Leszczyński, A new existence result for a non-linear heat equation with functional dependence, Comment. Math. Prace Mat. 37 (1997), 155-181. | Zbl 0896.35067
[012] [13] H. Leszczyński, General finite difference approximation to the Cauchy problem for non-linear parabolic differential-functional equations, Ann. Polon. Math. 53 (1991), 15-28. | Zbl 0731.65079
[013] [14] H. Leszczyński, Convergence results for unbounded solutions of first order non-linear differential-functional equations, Ann. Polon. Math. 64 (1996), 1-16. | Zbl 0863.35110
[014] [15] H. Leszczyński, Discrete approximations to the Cauchy problem for hyperbolic differential-functional systems in the Schauder canonic form, Zh. Vychisl. Mat. Mat. Fiz. 34 (1994), 185-200 (in Russian); English transl.: Comput. Math. Math. Phys. 34 (1994), 151-164. | Zbl 0820.65054
[015] [16] M. Malec et A. Schiaffino, Méthode aux différences finies pour une équation non linéaire différentielle fonctionnelle du type parabolique avec une condition initiale de Cauchy, Boll. Un. Mat. Ital. B (7) 1 (1987), 99-109. | Zbl 0617.65083
[016] [17] L. F. Shampine, ODE solvers and the method of lines, Numer. Methods Partial Differential Equations 10 (1994), 739-755. | Zbl 0826.65082
[017] [18] A. Voigt, Line method approximation to the Cauchy problem for nonlinear differential equations, Numer. Math. 23 (1974), 23-36. | Zbl 0303.35046
[018] [19] A. Voigt, The method of lines for nonlinear parabolic differential equations with mixed derivatives, Numer. Math. 32 (1979), 197-207. | Zbl 0387.65060