The existence of solutions of Hammerstein equations in the space of bounded and continuous functions is proved. It is obtained by the Schauder fixed point theorem using a compactness theorem. The result is applied to Wiener-Hopf equations and to ODE's.
@article{bwmeta1.element.bwnjournal-article-apmv69z1p49bwm,
author = {Robert Sta\'nczy},
title = {Hammerstein equations with an integral over a noncompact domain},
journal = {Annales Polonici Mathematici},
volume = {69},
year = {1998},
pages = {49-60},
zbl = {0919.45004},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv69z1p49bwm}
}
Robert Stańczy. Hammerstein equations with an integral over a noncompact domain. Annales Polonici Mathematici, Tome 69 (1998) pp. 49-60. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv69z1p49bwm/
[000] [1] J. Banaś, Measures of noncompactness in the space of continuous tempered functions, Demonstratio Math. 14 (1981), 127-133. | Zbl 0462.47035
[001] [2] Yu. L. Daletskiĭ and M. G. Kreĭn, Stability of Solutions of Differential Equations in a Banach Space, Nauka, Moscow, 1970 (in Russian).
[002] [3] J. Diestel and J. J. Uhl, Jr., Vector Measures, Amer. Math. Soc., Providence, R.I., 1977.
[003] [4] A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math. 54 (1929), 117-176.
[004] [5] B. Przeradzki, The existence of bounded solutions for differential equations in Hilbert spaces, Ann. Polon. Math. 56 (1992), 103-121. | Zbl 0805.47041
[005] [6] K. Yosida, Functional Analysis, Springer, Berlin, 1974.