We derive some properties of the Hardy class of analytic functions defined by the Salagean operator.
@article{bwmeta1.element.bwnjournal-article-apmv69z1p25bwm, author = {Norio Niwa and Toshiya Jimbo and Shigeyoshi Owa}, title = {Hardy class of functions defined by the Salagean operator}, journal = {Annales Polonici Mathematici}, volume = {69}, year = {1998}, pages = {25-30}, zbl = {0917.30010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv69z1p25bwm} }
Norio Niwa; Toshiya Jimbo; Shigeyoshi Owa. Hardy class of functions defined by the Salagean operator. Annales Polonici Mathematici, Tome 69 (1998) pp. 25-30. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv69z1p25bwm/
[000] [1] P. L. Duren, Theory of Spaces, Monographs Textbooks Pure Appl. Math. 38, Academic Press, New York. 1970.
[001] [2] P. J. Eenigenburg and F. R. Keogh, The Hardy class of some univalent functions and their derivatives, Michigan Math. J. 17 (1970), 335-346. | Zbl 0206.35901
[002] [3] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971), 469-474. | Zbl 0224.30026
[003] [4] Y. C. Kim, K. S. Lee and H. M. Srivastava, Certain classes of integral operators associated with the Hardy space of analytic functions, Complex Variables Theory Appl. 20 (1992), 1-12. | Zbl 0774.30051
[004] [5] M. Nunokawa, On starlikeness of Libera transformation, Complex Variables Theory Appl. 17 (1991), 79-83. | Zbl 0758.30011
[005] [6] G. S. Salagean, Subclasses of univalent functions, in: Lecture Notes in Math. 1013, C. A. Cazacu, N. Boboc, M. Jurchescu and I. Susiu (eds.) Springer, Berlin 1983, 362-372.
[006] [7] D. R. Wilken and J. Feng, A remark on convex and starlike functions, J. London Math. Soc. 21 (1980), 287-290. | Zbl 0431.30007