We consider piecewise monotonic and expanding transformations τ of a real interval (not necessarily bounded) into itself with countable number of points of discontinuity of τ’ and with some conditions on the variation which need not be a bounded function (although it is bounded on any compact interval). We prove that such transformations have absolutely continuous invariant measures. This result generalizes all previous “bounded variation” existence theorems.
@article{bwmeta1.element.bwnjournal-article-apmv69z1p13bwm, author = {Marian Jab\l o\'nski and Pawe\l\ G\'ora}, title = {Invariant measures and the compactness of the domain}, journal = {Annales Polonici Mathematici}, volume = {69}, year = {1998}, pages = {13-24}, zbl = {0920.28012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv69z1p13bwm} }
Marian Jabłoński; Paweł Góra. Invariant measures and the compactness of the domain. Annales Polonici Mathematici, Tome 69 (1998) pp. 13-24. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv69z1p13bwm/
[000] [Gó] P. Góra, Properties of invariant measures for piecewise expanding transformations with summable oscillation of the derivative, Ergodic Theory Dynam. Systems 14 (1994), 475-492. | Zbl 0822.28008
[001] [JGB] M. Jabłoński, P. Góra and A. Boyarsky, A general existence theorem for absolutely continuous invariant measures on bounded and unbounded intervals, Nonlinear World 2 (1995), 183-200. | Zbl 0895.28005
[002] [JL] M. Jabłoński and A. Lasota, Absolutely continuous invariant measures for transformations on the real line, Zeszyty Nauk. Uniw. Jagiell. Prace Mat. 22 (1981), 7-13. | Zbl 0479.28013
[003] [KS] A. A. Kosyakin and E. A. Sandler, Ergodic properties of a certain class of piecewise smooth transformations of a segment, Izv. Vyssh. Uchebn. Zaved. Mat. 1972, no. 3, 32-40 (in Russian).
[004] [LY] A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488. | Zbl 0298.28015
[005] [Re] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493. | Zbl 0079.08901
[006] [Ry] M. R. Rychlik, Bounded variation and invariant measures, Studia Math. 76 (1983), 69-80. | Zbl 0575.28011
[007] [Sch] B. Schmitt, Contributions à l'étude de systèmes dynamiques unidimensionnels en théorie ergodique, Ph.D. Thesis, University of Bourgogne, 1986.
[008] [Wo] S. Wong, Some metric properties of piecewise monotonic mappings of the unit interval, Trans. Amer. Math. Soc. 246 (1978), 493-500. | Zbl 0401.28011