Elementary proofs of the Liouville and Bôcher theorems for polyharmonic functions
Ewa Ligocka
Annales Polonici Mathematici, Tome 69 (1998), p. 257-265 / Harvested from The Polish Digital Mathematics Library

Elementary proofs of the Liouville and Bôcher theorems for polyharmonic functions are given. These proofs are on the calculus level and use only the basic knowledge of harmonic functions given in Axler, Bourdon and Ramey's book.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:270330
@article{bwmeta1.element.bwnjournal-article-apmv68z3p257bwm,
     author = {Ewa Ligocka},
     title = {Elementary proofs of the Liouville and B\^ocher theorems for polyharmonic functions},
     journal = {Annales Polonici Mathematici},
     volume = {69},
     year = {1998},
     pages = {257-265},
     zbl = {0903.31006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv68z3p257bwm}
}
Ewa Ligocka. Elementary proofs of the Liouville and Bôcher theorems for polyharmonic functions. Annales Polonici Mathematici, Tome 69 (1998) pp. 257-265. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv68z3p257bwm/

[000] [1] N. Aronszajn, T. Creese and L. Lipkin, Polyharmonic Functions, Clarendon Press, Oxford, 1983.

[001] [2] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer, 1992. | Zbl 0765.31001

[002] [3] C B. R. Choe, Bôcher's theorem for M-harmonic functions, Houston J. Math. 18 (1992), 539-549. | Zbl 0787.31007

[003] [4] S. D. Eĭdel'man and T. G. Pletneva, Bôcher's theorem for positive solutions of elliptic equations of arbitrary order, Mat. Issled. 8 (1973), 173-177, 185 (in Russian).

[004] [5] F A. I. Firdman, The generalized Bôcher theorem for positive solutions of quasielliptic equations, Voronezh. Gos. Univ. Trudy Mat. Fak. Publ. 1973, 111-121; Ref. Zh. Mat. 1974 7B 331 (in Russian).

[005] [6] R. Harvey and J. C. Polking, A Laurent expansion for solutions to elliptic equations, Trans. Amer. Math. Soc. 180 (1973), 407-413. | Zbl 0285.35024

[006] [7] N E. Nelson, A proof of Liouville's theorem, Proc. Amer. Math. Soc. 12 (1961), 995. | Zbl 0124.31203

[007] [8] W M. Wachman, Generalized Laurent series for singular solutions of elliptic partial differential equations, Proc. Amer. Math. Soc. 15 (1964), 101-108. | Zbl 0145.14503