Two problems are considered describing dynamic processes for a class of rate-type elastic-viscoplastic materials with or without internal state variable. The existence and uniqueness of the solution is proved using classical results of linear elasticity theory together with a fixed point method.
@article{bwmeta1.element.bwnjournal-article-apmv68z3p237bwm,
author = {A. Amassad},
title = {A fixed point method in dynamic processes for a class of elastic-viscoplastic materials},
journal = {Annales Polonici Mathematici},
volume = {69},
year = {1998},
pages = {237-247},
zbl = {0909.73033},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv68z3p237bwm}
}
A. Amassad. A fixed point method in dynamic processes for a class of elastic-viscoplastic materials. Annales Polonici Mathematici, Tome 69 (1998) pp. 237-247. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv68z3p237bwm/
[000] [1] N. Cristescu and I. Suliciu, Viscoplasticity, Martius Nijhoff and Editura Tehnica, Bucarest, 1982.
[001] [2] S. Djabi and M. Sofonea, A fixed point method in quasistatic rate-type viscoplasticty, Appl. Math. Comput. Sci., 1993. | Zbl 0783.73027
[002] [3] G. Duvaut et J. L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972. | Zbl 0298.73001
[003] [4] I. R. Ionescu, Dynamic processes for a class of elastic-viscoplastic materials, Stud. CBRC Mat., Bucureşti, 1992. | Zbl 0761.73040
[004] [5] I. R. Ionescu and M. Sofonea, Functional and Numerical Methods in Viscoplasticity, Oxford Univ. Press, Oxford, 1993. | Zbl 0787.73005