Commutators of diffeomorphisms of a manifold with boundary
Tomasz Rybicki
Annales Polonici Mathematici, Tome 69 (1998), p. 199-210 / Harvested from The Polish Digital Mathematics Library

A well known theorem of Herman-Thurston states that the identity component of the group of diffeomorphisms of a boundaryless manifold is perfect and simple. We generalize this result to manifolds with boundary. Remarks on Cr-diffeomorphisms are included.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:270572
@article{bwmeta1.element.bwnjournal-article-apmv68z3p199bwm,
     author = {Tomasz Rybicki},
     title = {Commutators of diffeomorphisms of a manifold with boundary},
     journal = {Annales Polonici Mathematici},
     volume = {69},
     year = {1998},
     pages = {199-210},
     zbl = {0907.57022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv68z3p199bwm}
}
Tomasz Rybicki. Commutators of diffeomorphisms of a manifold with boundary. Annales Polonici Mathematici, Tome 69 (1998) pp. 199-210. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv68z3p199bwm/

[000] [1] A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978), 174-227. | Zbl 0393.58007

[001] [2] D. B. A. Epstein, The simplicity of certain groups of homeomorphisms, Compositio Math. 22 (1970), 165-173. | Zbl 0205.28201

[002] [3] D. B. A. Epstein, Commutators of C-diffeomorphisms, Comment. Math. Helv. 59 (1984), 111-122. | Zbl 0535.58007

[003] [4] K. Fukui, Homologies of the group Diff(,0) and its subgroups, J. Math. Kyoto Univ. 20 (1980), 475-487. | Zbl 0476.57016

[004] [5] M. R. Herman, Sur le groupe des difféomorphismes du tore, Ann. Inst. Fourier (Grenoble) 23 (2) (1973), 75-86.

[005] [6] A. Masson, Sur la perfection du groupe des difféomorphismes d'une variété à bord infiniment tangents à l'identité sur le bord, C. R. Acad. Sci. Paris Sér. A 285 (1977), 837-839. | Zbl 0409.58010

[006] [7] J. N. Mather, Commutators of diffeomorphisms, Comment. Math. Helv. I 49 (1974), 512-528; II 50 (1975), 33-40; III 60 (1985), 122-124. | Zbl 0289.57014

[007] [8] J. Palis and S. Smale, Structural stability theorems, in: Proc. Sympos. Pure Math. 14, Amer. Math. Soc., 1970, 223-231. | Zbl 0214.50702

[008] [9] T. Rybicki, The identity component of the leaf preserving diffeomorphism group is perfect, Monatsh. Math. 120 (1995), 289-305. | Zbl 0847.57033

[009] [10] L. Schwartz, Analyse Mathématique, Hermann, Paris 1967.

[010] [11] F. Sergeraert, Feuilletages et difféomorphismes infiniment tangents à l'identité, Invent. Math. 39 (1977), 253-275. | Zbl 0327.58004

[011] [12] W. Thurston, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 304-307. | Zbl 0295.57014