Two fiber bundles E₁ and E₂ over the same base space M yield the fibered set ℱ(E₁,E₂) → M, whose fibers are defined as , for each x ∈ M. This fibered set can be regarded as a smooth space in the sense of Frölicher and we construct its tangent prolongation. Then we extend the Frölicher-Nijenhuis bracket to projectable tangent valued forms on ℱ(E₁,E₂). These forms turn out to be a kind of differential operators. In particular, we consider a general connection on ℱ(E₁,E₂) and study the associated covariant differential and curvature.
@article{bwmeta1.element.bwnjournal-article-apmv68z2p97bwm, author = {Ivan Kol\'a\v r and Marco Modungo}, title = {The Fr\"olicher-Nijenhuis bracket on some functional spaces}, journal = {Annales Polonici Mathematici}, volume = {69}, year = {1998}, pages = {97-106}, zbl = {0982.53024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv68z2p97bwm} }
Ivan Kolář; Marco Modungo. The Frölicher-Nijenhuis bracket on some functional spaces. Annales Polonici Mathematici, Tome 69 (1998) pp. 97-106. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv68z2p97bwm/
[000] [1] A. Cabras and I. Kolář, Connections on some functional bundles, to appear.
[001] [2] A. Frölicher, Smooth structures, in: Category Theory 1981, Lecture Notes in Math. 962, Springer, 1982, 69-81.
[002] [3] A. Frölicher and A. Nijenhuis, Theory of vector valued differential forms, I, Indag. Math. 18 (1956), 338-359.
[003] [4] A. Jadczyk and M. Modugno, An outline of a new geometrical approach to Galilei general relativistic quantum mechanics, to appear.
[004] [5] A. Jadczyk and M. Modugno, Galilei general relativistic quantum mechanics, preprint 1993, 1-220.
[005] [6] I. Kolář, On the second tangent bundle and generalized Lie derivatives, Tensor (N.S.) 38 (1982), 98-102. | Zbl 0512.58002
[006] [7] I. Kolář, P. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993. | Zbl 0782.53013
[007] [8] Y. Kosmann-Schwarzbach, Vector fields and generalized vector fields on fibred manifolds, in: Lecture Notes in Math. 792, Springer, 1982, 307-355.
[008] [9] L. Mangiarotti and M. Modugno, Graded Lie algebras and connections on fibred spaces, J. Math. Pures Appl. 83 (1984), 111-120. | Zbl 0494.53033
[009] [10] P. Michor, Gauge Theory for Fiber Bundles, Bibliopolis, Napoli, 1991. | Zbl 0953.53001
[010] [11] A. Vanžurová, On geometry of the third order tangent bundle, Acta Univ. Palack. Olomuc. Math. 24 (1985), 81-96. | Zbl 0619.53013