A singular initial value problem for the equation u(n)(x)=g(u(x))
Wojciech Mydlarczyk
Annales Polonici Mathematici, Tome 69 (1998), p. 177-189 / Harvested from The Polish Digital Mathematics Library

We consider the problem of the existence of positive solutions u to the problem u(n)(x)=g(u(x)), u(0)=u'(0)=...=u(n-1)(0)=0 (g ≥ 0,x > 0, n ≥ 2). It is known that if g is nondecreasing then the Osgood condition δ1/s[s/g(s)]1/nds< is necessary and sufficient for the existence of nontrivial solutions to the above problem. We give a similar condition for other classes of functions g.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:270540
@article{bwmeta1.element.bwnjournal-article-apmv68z2p177bwm,
     author = {Wojciech Mydlarczyk},
     title = {A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$
            },
     journal = {Annales Polonici Mathematici},
     volume = {69},
     year = {1998},
     pages = {177-189},
     zbl = {0903.34003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv68z2p177bwm}
}
Wojciech Mydlarczyk. A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$
            . Annales Polonici Mathematici, Tome 69 (1998) pp. 177-189. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv68z2p177bwm/

[000] [1] P. J. Bushell and W. Okrasiński, Uniqueness of solutions for a class of nonlinear Volterra integral equations with convolution kernel, Math. Proc. Cambridge Philos. Soc. 106 (1989), 547-552. | Zbl 0689.45013

[001] [2] G. Gripenberg, Unique solutions of some Volterra integral equations, Math. Scand. 48 (1981), 59-67. | Zbl 0463.45002

[002] [3] R. K. Miller, Nonlinear Volterra Integral Equations, Benjamin, 1971. | Zbl 0448.45004

[003] [4] W. Mydlarczyk, The existence of nontrivial solutions of Volterra equations, Math. Scand. 68 (1991), 83-88. | Zbl 0701.45002

[004] [5] W. Mydlarczyk, An initial value problem for a third order differential equation, Ann. Polon. Math. 59 (1994), 215-223. | Zbl 0808.34004

[005] [6] W. Okrasiński, Nontrivial solutions to nonlinear Volterra integral equations, SIAM J. Math. Anal. 22 (1991), 1007-1015. | Zbl 0735.45005