We consider the problem of the existence of positive solutions u to the problem , (g ≥ 0,x > 0, n ≥ 2). It is known that if g is nondecreasing then the Osgood condition is necessary and sufficient for the existence of nontrivial solutions to the above problem. We give a similar condition for other classes of functions g.
@article{bwmeta1.element.bwnjournal-article-apmv68z2p177bwm, author = {Wojciech Mydlarczyk}, title = {A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$ }, journal = {Annales Polonici Mathematici}, volume = {69}, year = {1998}, pages = {177-189}, zbl = {0903.34003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv68z2p177bwm} }
Wojciech Mydlarczyk. A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$ . Annales Polonici Mathematici, Tome 69 (1998) pp. 177-189. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv68z2p177bwm/
[000] [1] P. J. Bushell and W. Okrasiński, Uniqueness of solutions for a class of nonlinear Volterra integral equations with convolution kernel, Math. Proc. Cambridge Philos. Soc. 106 (1989), 547-552. | Zbl 0689.45013
[001] [2] G. Gripenberg, Unique solutions of some Volterra integral equations, Math. Scand. 48 (1981), 59-67. | Zbl 0463.45002
[002] [3] R. K. Miller, Nonlinear Volterra Integral Equations, Benjamin, 1971. | Zbl 0448.45004
[003] [4] W. Mydlarczyk, The existence of nontrivial solutions of Volterra equations, Math. Scand. 68 (1991), 83-88. | Zbl 0701.45002
[004] [5] W. Mydlarczyk, An initial value problem for a third order differential equation, Ann. Polon. Math. 59 (1994), 215-223. | Zbl 0808.34004
[005] [6] W. Okrasiński, Nontrivial solutions to nonlinear Volterra integral equations, SIAM J. Math. Anal. 22 (1991), 1007-1015. | Zbl 0735.45005