On the class of functions strongly starlike of order α with respect to a point
Adam Lecko
Annales Polonici Mathematici, Tome 69 (1998), p. 107-117 / Harvested from The Polish Digital Mathematics Library

We consider the class 𝓩(k;w), k ∈ [0,2], w ∈ ℂ, of plane domains Ω called k-starlike with respect to the point w. An analytic characterization of regular and univalent functions f such that f(U) is in 𝓩(k;w), where w ∈ f(U), is presented. In particular, for k = 0 we obtain the well known analytic condition for a function f to be starlike w.r.t. w, i.e. to be regular and univalent in U and have f(U) starlike w.r.t. w ∈ f(U).

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:270146
@article{bwmeta1.element.bwnjournal-article-apmv68z2p107bwm,
     author = {Adam Lecko},
     title = {On the class of functions strongly starlike of order $\alpha$ with respect to a point},
     journal = {Annales Polonici Mathematici},
     volume = {69},
     year = {1998},
     pages = {107-117},
     zbl = {0901.30017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv68z2p107bwm}
}
Adam Lecko. On the class of functions strongly starlike of order α with respect to a point. Annales Polonici Mathematici, Tome 69 (1998) pp. 107-117. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv68z2p107bwm/

[000] [1] D. A. Brannan and W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. (2) 1 (1969), 431-443. | Zbl 0177.33403

[001] [2] A. W. Goodman, Univalent Functions, Mariner, Tampa, Fla., 1983.

[002] [3] W. Ma and D. Minda, An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 89-97.

[003] [4] J. Stankiewicz, On a family of starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 22-24 (1968-70), 175-181.

[004] [5] J. Stankiewicz, Quelques problèmes extrémaux dans les classes des fonctions α-angulairement étoilées, Ann. Univ. Mariae Curie-Skłodowska Sect. A 20 (1966), 59-75.

[005] [6] J. K. Wald, On starlike functions, Ph.D. thesis, Univ. of Delaware, Newark, Del., 1978.