Randomly connected dynamical systems - asymptotic stability
Katarzyna Horbacz
Annales Polonici Mathematici, Tome 69 (1998), p. 31-50 / Harvested from The Polish Digital Mathematics Library

We give sufficient conditions for asymptotic stability of a Markov operator governing the evolution of measures due to the action of randomly chosen dynamical systems. We show that the existence of an invariant measure for the transition operator implies the existence of an invariant measure for the semigroup generated by the system.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:270275
@article{bwmeta1.element.bwnjournal-article-apmv68z1p31bwm,
     author = {Katarzyna Horbacz},
     title = {Randomly connected dynamical systems - asymptotic stability},
     journal = {Annales Polonici Mathematici},
     volume = {69},
     year = {1998},
     pages = {31-50},
     zbl = {0910.47003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv68z1p31bwm}
}
Katarzyna Horbacz. Randomly connected dynamical systems - asymptotic stability. Annales Polonici Mathematici, Tome 69 (1998) pp. 31-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv68z1p31bwm/

[000] [1] R. Fortet et B. Mourier, Convergence de la répartition empirique vers la répartition théorétique, Ann. Sci. École Norm. Sup. 70 (1953), 267-285. | Zbl 0053.09601

[001] [2] K. Horbacz, Dynamical systems with multiplicative perturbations: The strong convergence of measures, Ann. Polon. Math. 58 (1993), 85-93. | Zbl 0782.47007

[002] [3] W. Jarczyk and A. Lasota, Invariant measures for fractals and dynamical systems, to appear.

[003] [4] A. Lasota, From fractals to stochastic differential equations, to appear.

[004] [5] A. Lasota and M. C. Mackey, Noise and statistical periodicity, Physica D 28 (1987), 143-154. | Zbl 0645.60068

[005] [6] A. Lasota and M. C. Mackey, Why do cells divide?, to appear.

[006] [7] A. Lasota and M. C. Mackey, Chaos, Fractals and Noise - Stochastic Aspect of Dynamics, Springer, New York, 1994. | Zbl 0784.58005

[007] [8] A. Lasota and J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynamics 2 (1994), 41-77. | Zbl 0804.47033

[008] [9] T. Szarek, Iterated function systems depending on previous transformation, Univ. Iagell. Acta Math., to appear. | Zbl 0888.47016