A set on which the local Łojasiewicz exponent is attained
Jacek Chądzyński ; Tadeusz Krasiński
Annales Polonici Mathematici, Tome 66 (1997), p. 297-301 / Harvested from The Polish Digital Mathematics Library

Let U be a neighbourhood of 0 ∈ ℂⁿ. We show that for a holomorphic mapping F=(f,...,f):Um, F(0) = 0, the Łojasiewicz exponent ₀(F) is attained on the set z ∈ U: f₁(z)·...·fₘ(z) = 0.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:270377
@article{bwmeta1.element.bwnjournal-article-apmv67z3p297bwm,
     author = {Jacek Ch\k adzy\'nski and Tadeusz Krasi\'nski},
     title = {A set on which the local \L ojasiewicz exponent is attained},
     journal = {Annales Polonici Mathematici},
     volume = {66},
     year = {1997},
     pages = {297-301},
     zbl = {0912.32027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z3p297bwm}
}
Jacek Chądzyński; Tadeusz Krasiński. A set on which the local Łojasiewicz exponent is attained. Annales Polonici Mathematici, Tome 66 (1997) pp. 297-301. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z3p297bwm/

[000] [CK₁] J. Chądzyński and T. Krasiński, The Łojasiewicz exponent of an analytic mapping of two complex variables at an isolated zero, in: Singularities, S. Łojasiewicz (ed.), Banach Center Publ. 20, PWN, Warszawa, 1988, 139-146. | Zbl 0674.32004

[001] [CK₂] J. Chądzyński and T. Krasiński, A set on which the Łojasiewicz exponent at infinity is attained, Ann. Polon. Math. 67 (1997), 191-197. | Zbl 0924.32004

[002] [CK₃] J. Chądzyński and T. Krasiński, On the Łojasiewicz exponent for analytic curves, in: Singularities Symposium - Łojasiewicz 70, B. Jakubczyk, W. Pawłucki and J. Stasica (eds.), Banach Center Publ., to appear. | Zbl 0924.32006

[003] [LT] M. Lejeune-Jalabert et B. Teissier, Clôture intégrale des idéaux et equisingularité, Centre de Mathématiques, École Polytechnique, 1974.

[004] [P] A. Płoski, Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of ℂ², Ann. Polon. Math. 51 (1990), 275-281. | Zbl 0764.32012