We obtain a description of the spectrum and estimates for generalized positive solutions of -Δu = λ(f(x) + h(u)) in Ω, , where f(x) and h(u) satisfy minimal regularity assumptions.
@article{bwmeta1.element.bwnjournal-article-apmv67z3p289bwm, author = {Mario Michele Coclite}, title = {On a semilinear elliptic eigenvalue problem}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {289-295}, zbl = {0902.35042}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z3p289bwm} }
Mario Michele Coclite. On a semilinear elliptic eigenvalue problem. Annales Polonici Mathematici, Tome 66 (1997) pp. 289-295. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z3p289bwm/
[000] [1] A. Ambrosetti, A perturbation theorem for superlinear boundary value problems, Math. Res. Center, Univ. of Wisconsin-Madison, Tech. Sum. Report #1446 (1974).
[001] [2] A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 267 (1981), 1-32. | Zbl 0476.35030
[002] [3] G. Bonanno, Semilinear elliptic eigenvalue problems, preprint, 1995.
[003] [4] G. Bonanno and S. A. Marano, Positive solutions of elliptic equations with discontinuous nonlinearities, Topol. Methods Nonlinear Anal. 8 (1996), 263-273. | Zbl 0891.35038
[004] [5] J. M. Bony, Principe du maximum dans les espaces de Sobolev, C. R. Acad. Sci. Paris Sér. A 265 (1967), 333-336. | Zbl 0164.16803
[005] [6] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
[006] [7] K. J. Brown and H. Budin, Multiple positive solutions for a class of nonlinear boundary value problems, J. Math. Anal. Appl. 60 (1977), 329-338. | Zbl 0361.35023
[007] [8] M. M. Coclite, On a singular nonlinear Dirichlet problem. II, Boll. Un. Mat. Ital. B (7) 5 (1991), 955-975. | Zbl 0789.35057
[008] [9] M. M. Coclite, On a singular nonlinear Dirichlet problem. III, Nonlinear Anal. 21 (1993), 547-564. | Zbl 0799.35076
[009] [10] M. M. Coclite, On a singular nonlinear Dirichlet problem. IV, Nonlinear Anal. 23 (1994), 925-936. | Zbl 0814.35035
[010] [11] M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal. 58 (1975), 207-218. | Zbl 0309.35057
[011] [12] S. Gomes, On a singular nonlinear elliptic problem, SIAM J. Math. Anal. 17 (1986), 1359-1369. | Zbl 0614.35037
[012] [13] J. P. Keener and H. B. Keller, Positive solutions of convex nonlinear eigenvalue problems, J. Differential Equations 16 (1974), 103-125. | Zbl 0287.35074
[013] [14] H. B. Keller and D. S. Cohen, Some positone problems suggested by nonlinear heat generation, J. Math. Mech. 16 (1967), 1361-1376. | Zbl 0152.10401
[014] [15] P. H. Rabinowitz, Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math.Soc. 272 (1982), 753-769. | Zbl 0589.35004