We give a Schwarz lemma on complex ellipsoids.
@article{bwmeta1.element.bwnjournal-article-apmv67z3p269bwm, author = {Hidetaka Hamada}, title = {A Schwarz lemma on complex ellipsoids}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {269-275}, zbl = {0948.32007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z3p269bwm} }
Hidetaka Hamada. A Schwarz lemma on complex ellipsoids. Annales Polonici Mathematici, Tome 66 (1997) pp. 269-275. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z3p269bwm/
[000] [1] G. Dini and A. S. Primicerio, Proper holomorphic mappings between generalized pseudoellipsoids, Ann. Mat. Pura Appl. (4) 158 (1991), 219-229. | Zbl 0736.32002
[001] [2] H. Hamada, A Schwarz lemma in several complex variables, in: Proc. Third International Colloquium on Finite or Infinite Dimensional Complex Analysis (Seoul, 1995), Kyushu Univ. Co-op., Fukuoka, Japan, 1995, 105-110.
[002] [3] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter, Berlin, 1993. | Zbl 0789.32001
[003] [4] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257-261. | Zbl 0509.32015
[004] [5] L. Lempert, Intrinsic distances and holomorphic retracts, in: Complex Analysis and Applications '81, Bulgar. Acad. Sci., Sophia, 1984, 341-364.
[005] [6] H. L. Royden and P. M. Wong, Carathéodory and Kobayashi metrics on convex domains, preprint.
[006] [7] J. P. Vigué, Un lemme de Schwarz pour les domaines bornés symétriques irréductibles et certains domaines bornés strictement convexes, Indiana Univ. Math. J. 40 (1991), 293-304. | Zbl 0733.32025
[007] [8] J. P. Vigué, Le lemme de Schwarz et la caractérisation des automorphismes analytiques, Astérisque 217 (1993), 241-249.