We prove a new sufficient condition for the asymptotic stability of Markov operators acting on measures. This criterion is applied to iterated function systems.
@article{bwmeta1.element.bwnjournal-article-apmv67z3p247bwm, author = {Tomasz Szarek}, title = {Markov operators acting on Polish spaces}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {247-257}, zbl = {0903.60052}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z3p247bwm} }
Tomasz Szarek. Markov operators acting on Polish spaces. Annales Polonici Mathematici, Tome 66 (1997) pp. 247-257. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z3p247bwm/
[000] [1] M. F. Barnsley, Fractals Everywhere, Academic Press, New York, 1988.
[001] [2] M. F. Barnsley, V. Ervin, D. Hardin and J. Lancaster, Solution of an inverse problem for fractals and other sets, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 1975-1977. | Zbl 0613.28008
[002] [3] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. | Zbl 0172.21201
[003] [4] R. M. Dudley, Probabilities and Metrics, Aarhus Universitet, 1976.
[004] [5] A. Lasota, From fractals to stochastic differential equations, to appear. | Zbl 0835.60058
[005] [6] A. Lasota and J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41-77. | Zbl 0804.47033
[006] [7] K. Łoskot and R. Rudnicki, Limit theorems for stochastically perturbed dynamical systems, J. Appl. Probab. 32 (1995), 459-469. | Zbl 0829.60057
[007] [8] K. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967. | Zbl 0153.19101
[008] [9] T. Szarek, Iterated function systems depending on previous transformations, to appear. | Zbl 0888.47016