We give several definitions of the pluricomplex Green function and show their equivalence.
@article{bwmeta1.element.bwnjournal-article-apmv67z3p233bwm, author = {Armen Edigarian}, title = {On definitions of the pluricomplex Green function}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {233-246}, zbl = {0909.31007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z3p233bwm} }
Armen Edigarian. On definitions of the pluricomplex Green function. Annales Polonici Mathematici, Tome 66 (1997) pp. 233-246. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z3p233bwm/
[000] [H] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, 1962. | Zbl 0117.34001
[001] [J-P] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter, 1993. | Zbl 0789.32001
[002] [K] M. Klimek, Pluripotential Theory, Oxford Univ. Press, 1991.
[003] [N] K. Noshiro, Cluster Sets, Springer, 1960. | Zbl 0090.28801
[004] [P1] E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144. | Zbl 0811.32010
[005] [P2] E. A. Poletsky, Plurisubharmonic functions as solutions of variational problems, in: Proc. Sympos. Pure Math. 52, Amer. Math. Soc., 1991, 163-171. | Zbl 0739.32015
[006] [P-S] E. A. Poletsky and B. V. Shabat, Invariant metrics, in: Several Complex Variables III, G. M. Khenkin (ed.), Springer, 1989, 63-112.
[007] [R] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1974. | Zbl 0278.26001