We consider the local initial value problem for the hyperbolic partial functional differential equation of the first order (1) on E, (2) z(x,y) = ϕ(x,y) on [-τ₀,0]×[-b,b], where E is the Haar pyramid and τ₀ ∈ ℝ₊, b = (b₁,...,bₙ) ∈ ℝⁿ₊. Using the method of bicharacteristics and the method of successive approximations for a certain functional integral system we prove, under suitable assumptions, a theorem on the local existence of weak solutions of the problem (1),(2).
@article{bwmeta1.element.bwnjournal-article-apmv67z3p215bwm, author = {Tomasz Cz\l api\'nski}, title = {On the local Cauchy problem for nonlinear hyperbolic functional differential equations}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {215-232}, zbl = {0899.35121}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z3p215bwm} }
Tomasz Człapiński. On the local Cauchy problem for nonlinear hyperbolic functional differential equations. Annales Polonici Mathematici, Tome 66 (1997) pp. 215-232. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z3p215bwm/
[000] [1] P. Bassanini, On a recent proof concerning a boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form, Boll. Un. Mat. Ital. A (5) 14 (1977), 325-332. | Zbl 0355.35059
[001] [2] P. Bassanini, Iterative methods for quasilinear hyperbolic systems, Boll. Un. Mat. Ital. B (6) 1 (1982), 225-250. | Zbl 0488.35056
[002] [3] P. Bassanini and J. Turo, Generalized solutions of free boundary problems for hyperbolic systems of functional partial differential equations, Ann. Mat. Pura Appl. 156 (1990), 211-230. | Zbl 0716.35088
[003] [4] P. Brandi and R. Ceppitelli, On the existence of solutions of a nonlinear functional partial differential equation of the first order, Atti Sem. Mat. Fis. Univ. Modena 29 (1980), 166-186. | Zbl 0476.35073
[004] [5] P. Brandi and R. Ceppitelli, Existence, uniqueness and continuous dependence for a hereditary nonlinear functional partial differential equations, Ann. Polon. Math. 47 (1986), 121-136. | Zbl 0657.35124
[005] [6] P. Brandi, Z. Kamont and A. Salvadori, Existence of weak solutions for partial differential-functional equations, to appear. | Zbl 0737.35134
[006] [7] M. G. Cazzani-Nieri, Un problema ai limiti per sistemi integrodifferenziali non lineari di tipo iperbolico, Ann. Mat. Pura Appl. 157 (1994), 351-387.
[007] [8] L. Cesari, A boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form, Ann. Scuola Norm. Sup. Pisa (4) 1 (1974), 311-358. | Zbl 0307.35063
[008] [9] L. Cesari, A boundary value problem for quasilinear hyperbolic systems, Riv. Mat. Univ. Parma 3 (1974), 107-131. | Zbl 0342.35036
[009] [10] M. Cinquini Cibrario, Nuove ricerche sui sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti, Rend. Sem. Mat. Fis. Univ. Milano 52 (1982), 531-550. | Zbl 0599.35028
[010] [11] M. Cinquini Cibrario, Teoremi di esistenza per sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti, Rend. Ist. Lombardo 104 (1970), 795-829. | Zbl 0215.16202
[011] [12] M. Cinquini Cibrario, Sopra una classe di sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti, Ann. Mat. Pura Appl. 140 (1985), 223-253.
[012] [13] T. Człapiński, On the existence of generalized solutions of nonlinear first order partial differential-functional equations in two independent variables, Czechoslovak Math. J. 41 (1991), 490-506. | Zbl 0797.35159
[013] [14] T. Człapiński, On the Cauchy problem for quasilinear hyperbolic systems of partial differential-functional equations of the first order, Z. Anal. Anwendungen 10 (1991), 169-182. | Zbl 0763.35055
[014] [15] D. Jaruszewska-Walczak, Existence of solutions of first order partial differential-functional equations, Boll. Un. Mat. Ital. B (7) 4 (1990), 57-82. | Zbl 0705.35147
[015] [16] Z. Kamont and S. Zacharek, On the existence of weak solutions of nonlinear first order partial differential equations in two independent variables, Boll. Un. Mat. Ital. B (6) 5 (1986), 851-879. | Zbl 0629.35110
[016] [17] T. Kiguradze, Some boundary value problems for systems of linear partial differential equations of hyperbolic type, Mem. Differential Equations Math. Phys. 1 (1994), 1-144. | Zbl 0819.35003
[017] [18] A. D. Myshkis and A. S. Slopak, A mixed problem for systems of differential-functional equations with partial derivatives and with operators of Volterra type, Mat. Sb. 41 (1957), 239-256 (in Russian).
[018] [19] O. A. Oleĭnik, Discontinuous solutions of nonlinear differential equations, Uspekhi Mat. Nauk 12 (3) (1957), 3-73 (in Russian).
[019] [20] A. Salvadori, Sul problema di Cauchy per una struttura ereditaria di tipo iperbolico. Esistenza, unicità e dipendenza continua, Atti Sem. Mat. Fis. Univ. Modena 32 (1983), 329-356.
[020] [21] J. Szarski, Characteristics and Cauchy problems for nonlinear partial differential functional equations of first order, Univ. Kansas, Lawrence, Kan., 1959.
[021] [22] J. Turo, On some class of quasilinear hyperbolic systems of partial differential-functional equations of the first order, Czechoslovak Math. J. 36 (1986), 185-197. | Zbl 0612.35082
[022] [23] T. Ważewski, Sur l'appréciation du domaine d'existence des intégrales de l'équation aux dérivées partielles du premier ordre, Ann. Soc. Polon. Math. 14 (1935), 149-177. | Zbl 62.1283.03