We present a new approach to determining supports of extreme, normed by 1, positive definite class functions of discrete groups, i.e. characters in the sense of E. Thoma [8]. Any character of a group produces a unitary representation and thus a von Neumann algebra of linear operators with finite normal trace. We use a theorem of H. Umegaki [9] on the uniqueness of conditional expectation in finite von Neumann algebras. Some applications and examples are given.
@article{bwmeta1.element.bwnjournal-article-apmv67z2p199bwm, author = {Ernest P\l onka}, title = {On a method of determining supports of Thoma's characters of discrete groups}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {199-202}, zbl = {0882.43007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z2p199bwm} }
Ernest Płonka. On a method of determining supports of Thoma's characters of discrete groups. Annales Polonici Mathematici, Tome 66 (1997) pp. 199-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z2p199bwm/
[000] [1] R. J. Blattner, On induced representations, Amer. J. Math. 83 (1961), 79-98. | Zbl 0122.28405
[001] [2] A. L. Carey and W. Moran, Characters of nilpotent groups, Math. Proc. Cambridge Philos. Soc. 96 (1984), 123-137. | Zbl 0549.43004
[002] [3] M. Hall, The Theory of Groups, New York, Macmillan, 1969.
[003] [4] R. E. Howe, On representation of finitely generated discrete torsion free nilpotent groups, Pacific J. Math. 73 (1977), 281-305. | Zbl 0387.22005
[004] [5] E. Kaniuth und R. Lasser, Zum verallgemeinerten Wienerschen Satz über diskrete nilpotente Gruppen der Klasse 3, Math. Z. 163 (1978), 39-55.
[005] [6] E. Płonka, Remarks on characters of discrete nilpotent groups, Math. Ann. 240 (1979), 97-102. | Zbl 0405.43004
[006] [7] S. Sakai, C*-algebras and W*-algebras, Springer, 1971.
[007] [8] E. Thoma, Über unitäre Darstellungen abzählbarer Gruppen, Math. Ann. 153 (1964), 111-139. | Zbl 0136.11603
[008] [9] H. Umegaki, Condional expectation in operator algebras, Tôhoku Math. J. 6 (1954), 1977-1981.