We show that for a polynomial mapping the Łojasiewicz exponent of F is attained on the set .
@article{bwmeta1.element.bwnjournal-article-apmv67z2p191bwm, author = {Jacek Ch\k adzy\'nski and Tadeusz Krasi\'nski}, title = {A set on which the \L ojasiewicz exponent at infinity is attained}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {191-197}, zbl = {0924.32004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z2p191bwm} }
Jacek Chądzyński; Tadeusz Krasiński. A set on which the Łojasiewicz exponent at infinity is attained. Annales Polonici Mathematici, Tome 66 (1997) pp. 191-197. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z2p191bwm/
[000] [BR] R. Benedetti and J. J. Risler, Real Algebraic and Semi-Algebraic Sets, Hermann, Paris, 1090.
[001] [CK] J. Chądzyński and T. Krasiński, Exponent of growth of polynomial mappings of ℂ² into ℂ², in: Singularities, S. Łojasiewicz (ed.), Banach Center Publ. 20, PWN, Warszawa, 1988, 147-160.
[002] [J] Z. Jelonek, Testing sets for properness of polynomial mappings, Inst. Math., Jagiellonian University, preprint 16 (1996), 37 pp. | Zbl 0946.14039
[003] [NZ] A. Némethi and A. Zaharia, Milnor fibration at infinity, Indag. Math. 3 (1992), 323-335. | Zbl 0806.57021
[004] [P₁] A. Płoski, Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of ℂ², Ann. Polon. Math. 51 (1990), 275-281. | Zbl 0764.32012
[005] [P₂] A. Płoski, A note on the Łojasiewicz exponent at infinity, Bull. Soc. Sci. Lettres Łódź 44 (17) (1994), 11-15. | Zbl 0883.32022