We give a characterization of the irreducible components of a Weierstrass-type (W-type) analytic (resp. algebraic, Nash) variety in terms of the orbits of a Galois group associated in a natural way to this variety. Since every irreducible variety of pure dimension is (locally) a component of a W-type variety, this description may be applied to any such variety.
@article{bwmeta1.element.bwnjournal-article-apmv67z2p169bwm, author = {Romuald A. Janik}, title = {On irreducible components of a Weierstrass-type variety}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {169-178}, zbl = {0924.14001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z2p169bwm} }
Romuald A. Janik. On irreducible components of a Weierstrass-type variety. Annales Polonici Mathematici, Tome 66 (1997) pp. 169-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z2p169bwm/
[000] [1] S. Balcerzyk and T. Józefiak, Commutative Noetherian and Krull Rings, PWN, Warszawa, and Ellis Horwood, Chichester, 1989.
[001] [2] N. Jacobson, Lectures in Abstract Algebra, Vol. III, Grad. Texts in Math. 32, Springer, 1964. | Zbl 0124.27002
[002] [3] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, 1991. | Zbl 0747.32001
[003] [4] S. G. Krantz, Function Theory of Several Complex Variables, Wiley, New York, 1982. | Zbl 0471.32008
[004] [5] P. Tworzewski, Intersections of analytic sets with linear subspaces, Ann. Scuola Norm. Sup. Pisa 17 (1990), 227-271. | Zbl 0717.32006
[005] [6] H. Whitney, Complex Analytic Varieties, Addison-Wesley, 1972. | Zbl 0265.32008