On irreducible components of a Weierstrass-type variety
Romuald A. Janik
Annales Polonici Mathematici, Tome 66 (1997), p. 169-178 / Harvested from The Polish Digital Mathematics Library

We give a characterization of the irreducible components of a Weierstrass-type (W-type) analytic (resp. algebraic, Nash) variety in terms of the orbits of a Galois group associated in a natural way to this variety. Since every irreducible variety of pure dimension is (locally) a component of a W-type variety, this description may be applied to any such variety.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:270773
@article{bwmeta1.element.bwnjournal-article-apmv67z2p169bwm,
     author = {Romuald A. Janik},
     title = {On irreducible components of a Weierstrass-type variety},
     journal = {Annales Polonici Mathematici},
     volume = {66},
     year = {1997},
     pages = {169-178},
     zbl = {0924.14001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z2p169bwm}
}
Romuald A. Janik. On irreducible components of a Weierstrass-type variety. Annales Polonici Mathematici, Tome 66 (1997) pp. 169-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z2p169bwm/

[000] [1] S. Balcerzyk and T. Józefiak, Commutative Noetherian and Krull Rings, PWN, Warszawa, and Ellis Horwood, Chichester, 1989.

[001] [2] N. Jacobson, Lectures in Abstract Algebra, Vol. III, Grad. Texts in Math. 32, Springer, 1964. | Zbl 0124.27002

[002] [3] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, 1991. | Zbl 0747.32001

[003] [4] S. G. Krantz, Function Theory of Several Complex Variables, Wiley, New York, 1982. | Zbl 0471.32008

[004] [5] P. Tworzewski, Intersections of analytic sets with linear subspaces, Ann. Scuola Norm. Sup. Pisa 17 (1990), 227-271. | Zbl 0717.32006

[005] [6] H. Whitney, Complex Analytic Varieties, Addison-Wesley, 1972. | Zbl 0265.32008