Let a < 0 < b and Ω(a,b) = ℂ - ((-∞, a] ∪ [b,+∞)) and U= z: |z| < 1. We consider the class of functions f which are univalent, harmonic and sense-preserving with f(U) = Ω and satisfying f(0) = 0, and .
@article{bwmeta1.element.bwnjournal-article-apmv67z2p131bwm, author = {Albert E. Livingston}, title = {Univalent harmonic mappings II}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {131-145}, zbl = {0885.30011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z2p131bwm} }
Albert E. Livingston. Univalent harmonic mappings II. Annales Polonici Mathematici, Tome 66 (1997) pp. 131-145. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z2p131bwm/
[000] [1] Y. Abu-Muhanna and G. Schober, Harmonic mappings onto convex domains, Canad. J. Math. 39 (1987), 1489-1530. | Zbl 0644.30003
[001] [2] J. A. Cima and A. E. Livingston, Integral smoothness properties of some harmonic mappings, Complex Variables Theory Appl. 11 (1989), 95-110. | Zbl 0724.30011
[002] [3] J. A. Cima and A. E. Livingston, Nonbasic harmonic maps onto convex wedges, Colloq. Math. 66 (1993), 9-22. | Zbl 0820.30015
[003] [4] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25. | Zbl 0506.30007
[004] [5] W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.
[005] [6] W. Hengartner and G. Schober, Curvature estimates for some minimal surfaces, in: Complex Analysis, J. Hersch and A. Huber (eds.), Birkhäuser, 1988, 87-100. | Zbl 0664.30012
[006] [7] A. E. Livingston, Univalent harmonic mappings, Ann. Polon. Math. 57 (1992), 57-70.