On symmetry of the pluricomplex Green function for ellipsoids
Włodzimierz Zwonek
Annales Polonici Mathematici, Tome 66 (1997), p. 121-129 / Harvested from The Polish Digital Mathematics Library

We show that in the class of complex ellipsoids the symmetry of the pluricomplex Green function is equivalent to convexity of the ellipsoid.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:270751
@article{bwmeta1.element.bwnjournal-article-apmv67z2p121bwm,
     author = {W\l odzimierz Zwonek},
     title = {On symmetry of the pluricomplex Green function for ellipsoids},
     journal = {Annales Polonici Mathematici},
     volume = {66},
     year = {1997},
     pages = {121-129},
     zbl = {0884.31006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z2p121bwm}
}
Włodzimierz Zwonek. On symmetry of the pluricomplex Green function for ellipsoids. Annales Polonici Mathematici, Tome 66 (1997) pp. 121-129. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z2p121bwm/

[000] [Bed-Dem] E. Bedford and J.-P. Demailly, Two counterexamples concerning the pluri-complex Green function in ℂⁿ, Indiana Univ. Math. J. 37 (1988), 865-867.

[001] [Edi] A. Edigarian, On extremal mappings in complex ellipsoids, Ann. Polon. Math. 62 (1995), 83-96. | Zbl 0851.32025

[002] [Jar-Pfl] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter 1993.

[003] [Jar-Pfl-Zei] M. Jarnicki, P. Pflug and R. Zeinstra, Geodesics for convex complex ellipsoids, Ann. Scuola Norm. Sup. Pisa 20 (1993), 535-543. | Zbl 0812.32010

[004] [Kli] M. Klimek, Pluripotential Theory, Oxford University Press, 1991.

[005] [Lem1] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474.

[006] [Pfl-Zwo] P. Pflug and W. Zwonek, The Kobayashi metric for non-convex complex ellipsoids, Complex Variables Theory Appl. 29 (1996), 59-71. | Zbl 0843.32015

[007] [Pol] E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144. | Zbl 0811.32010