We show that in the class of complex ellipsoids the symmetry of the pluricomplex Green function is equivalent to convexity of the ellipsoid.
@article{bwmeta1.element.bwnjournal-article-apmv67z2p121bwm, author = {W\l odzimierz Zwonek}, title = {On symmetry of the pluricomplex Green function for ellipsoids}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {121-129}, zbl = {0884.31006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z2p121bwm} }
Włodzimierz Zwonek. On symmetry of the pluricomplex Green function for ellipsoids. Annales Polonici Mathematici, Tome 66 (1997) pp. 121-129. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z2p121bwm/
[000] [Bed-Dem] E. Bedford and J.-P. Demailly, Two counterexamples concerning the pluri-complex Green function in ℂⁿ, Indiana Univ. Math. J. 37 (1988), 865-867.
[001] [Edi] A. Edigarian, On extremal mappings in complex ellipsoids, Ann. Polon. Math. 62 (1995), 83-96. | Zbl 0851.32025
[002] [Jar-Pfl] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter 1993.
[003] [Jar-Pfl-Zei] M. Jarnicki, P. Pflug and R. Zeinstra, Geodesics for convex complex ellipsoids, Ann. Scuola Norm. Sup. Pisa 20 (1993), 535-543. | Zbl 0812.32010
[004] [Kli] M. Klimek, Pluripotential Theory, Oxford University Press, 1991.
[005] [Lem1] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474.
[006] [Pfl-Zwo] P. Pflug and W. Zwonek, The Kobayashi metric for non-convex complex ellipsoids, Complex Variables Theory Appl. 29 (1996), 59-71. | Zbl 0843.32015
[007] [Pol] E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144. | Zbl 0811.32010