Fundamental solutions of the complex Monge-Ampère equation
Halil Ibrahim Celik ; Evgeny A. Poletsky
Annales Polonici Mathematici, Tome 66 (1997), p. 103-110 / Harvested from The Polish Digital Mathematics Library

We prove that any positive function on ℂℙ¹ which is constant outside a countable Gδ-set is the order function of a fundamental solution of the complex Monge-Ampère equation on the unit ball in ℂ² with a singularity at the origin.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:270695
@article{bwmeta1.element.bwnjournal-article-apmv67z2p103bwm,
     author = {Halil Ibrahim Celik and Evgeny A. Poletsky},
     title = {Fundamental solutions of the complex Monge-Amp\`ere equation},
     journal = {Annales Polonici Mathematici},
     volume = {66},
     year = {1997},
     pages = {103-110},
     zbl = {0892.32013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z2p103bwm}
}
Halil Ibrahim Celik; Evgeny A. Poletsky. Fundamental solutions of the complex Monge-Ampère equation. Annales Polonici Mathematici, Tome 66 (1997) pp. 103-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z2p103bwm/

[000] [1] E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 19-22. | Zbl 0315.31007

[001] [2] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40. | Zbl 0547.32012

[002] [3] U. Cegrell and J. Thorbiörnson, Extremal plurisubharmonic functions, Ann. Polon. Math. 63 (1996), 63-69. | Zbl 0924.31005

[003] [4] H. I. Celik, Pointwise singularities of plurisubharmonic functions, Ph.D. Thesis, Syracuse University, 1996.

[004] [5] H. I. Celik and E. A. Poletsky, Order functions of plurisubharmonic functions, Studia Math. 124 (1997), 161-171. | Zbl 0883.32015

[005] [6] J. P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, in: Complex Analysis and Geometry, Plenum Press, New York, 1993, 115-193. | Zbl 0792.32006

[006] [7] M. Klimek, Pluripotential Theory, Oxford University Press, New York, 1991.

[007] [8] E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144. | Zbl 0811.32010