We prove an energy estimate for the complex Monge-Ampère operator, and a comparison theorem for the corresponding capacity and energy. The results are pluricomplex counterparts to results in classical potential theory.
@article{bwmeta1.element.bwnjournal-article-apmv67z1p95bwm, author = {Urban Cegrell and Leif Persson}, title = {An energy estimate for the complex Monge-Amp\`ere operator}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {95-102}, zbl = {0892.32012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z1p95bwm} }
Urban Cegrell; Leif Persson. An energy estimate for the complex Monge-Ampère operator. Annales Polonici Mathematici, Tome 66 (1997) pp. 95-102. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z1p95bwm/
[000] [1] E. Bedford, Survey of pluri-potential theory, in: Several Complex Variables, Proc. Mittag-Leffler Institute, 1987-88, J. E. Fornaess (ed.), Math. Notes 38, Princeton Univ. Press, 1993, 48-97.
[001] [2] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40. | Zbl 0547.32012
[002] [3] L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand, Princeton, N.J., 1967.
[003] [4] U. Cegrell, The symmetric pluricomplex Green function, in: Banach Center Publ. 31, Inst. Math., Polish Acad. Sci., Warszawa, 1995, 135-141. | Zbl 0831.31008
[004] [5] U. Cegrell, Pluricomplex energy, Acta Math., to appear. | Zbl 40.0098.04
[005] [6] N. S. Landkof, Foundations of Modern Potential Theory, Springer, 1972.
[006] [7] L. Persson, A Dirichlet principle for the complex Monge-Ampère operator, Research Report No. 8, 1997, Dept. Math., Umeå University. | Zbl 1045.34056