We study the decay in time of the spatial -norm (1 ≤ p ≤ ∞) of solutions to parabolic conservation laws with dispersive and dissipative terms added uₜ - uₓₓₜ - νuₓₓ + buₓ = f(u)ₓ or uₜ + uₓₓₓ - νuₓₓ + buₓ = f(u)ₓ, and we show that under general assumptions about the nonlinearity, solutions of the nonlinear equations have the same long time behavior as their linearizations at the zero solution.
@article{bwmeta1.element.bwnjournal-article-apmv67z1p65bwm, author = {Grzegorz Karch}, title = {$L^p$-decay of solutions to dissipative-dispersive perturbations of conservation laws}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {65-86}, zbl = {0882.35017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z1p65bwm} }
Grzegorz Karch. $L^p$-decay of solutions to dissipative-dispersive perturbations of conservation laws. Annales Polonici Mathematici, Tome 66 (1997) pp. 65-86. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z1p65bwm/
[000] [1] L. Abdelouhab, Nonlocal dispersive equations in weighted Sobolev spaces, Differential Integral Equations 5 (1992), 307-338. | Zbl 0786.35110
[001] [2] E. A. Alarcón, Existence and finite dimensionality of the global attractor for a class of nonlinear dissipative equations, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 893-916. | Zbl 0790.35062
[002] [3] J. Albert, On the decay of solutions of the generalized Benjamin-Bona-Mahony equation, J. Math. Anal. Appl. 141 (1989), 527-537. | Zbl 0697.35116
[003] [4] C. J. Amick, J. L. Bona, and M. E. Schonbek, Decay of solutions of some nonlinear wave equations, J. Differential Equations 81 (1989), 1-49. | Zbl 0689.35081
[004] [5] T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A 272 (1972), 47-78. | Zbl 0229.35013
[005] [6] P. Biler, Asymptotic behaviour in time of solutions to some equations generalizing the Korteweg-de Vries-Burgers equation, Bull. Polish Acad. Sci. Math. 32 (1984), 275-282. | Zbl 0561.35064
[006] [7] J. L. Bona and L. Luo, Decay of solutions to nonlinear, dispersive wave equations, Differential Integral Equations 6 (1993), 961-980. | Zbl 0780.35098
[007] [8] F. M. Christ and M. I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal. 100 (1991), 87-109.
[008] [9] M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc. 78 (1980), 385-390.
[009] [10] E. DiBenedetto and M. Pierre, On the maximum principle for pseudoparabolic equations, Indiana Univ. Math. J. 30 (1981), 821-854. | Zbl 0495.35047
[010] [11] D. B. Dix, The dissipation of nonlinear dispersive waves: The case of asymptotically weak nonlinearity, Comm. Partial Differential Equations 17 (1992), 1665-1693. | Zbl 0762.35110
[011] [12] J. Dziubański and G. Karch, Nonlinear scattering for some dispersive equations generalizing Benjamin-Bona-Mahony equations, Monatsh. Math. 122 (1996), 35-43. | Zbl 0867.35010
[012] [13] M. Escobedo and E. Zuazua, Large time behavior for convection-diffusion equations in , J. Funct. Anal. 100 (1991), 119-161. | Zbl 0762.35011
[013] [14] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, in: Studies in Applied Math., Adv. in Math. Suppl. Stud. 8, Academic Press, 1983, 93-128.
[014] [15] C. E. Kenig, G. Ponce, and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), 323-347. | Zbl 0737.35102
[015] [16] B. L. Lucier, On Sobolev regularizations of hyperbolic conservation laws, Comm. Partial Differential Equations 10 (1985), 1-28. | Zbl 0578.35057
[016] [17] M. E. Schonbek, Decay of solutions to parabolic conservation laws, Comm. Partial Differential Equations 5 (1980), 449-473. | Zbl 0476.35012
[017] [18] M. E. Schonbek, Uniform decay rates for parabolic conservation laws, Nonlinear Anal. 10 (1986), 943-953. | Zbl 0617.35060
[018] [19] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993. | Zbl 0821.42001
[019] [20] L. Zhang, Decay of solutions of generalized Benjamin-Bona-Mahony equations, Acta Math. Sinica (N.S.) 10 (1994), 428-438. | Zbl 0813.35111
[020] [21] L. Zhang, Decay of solutions of generalized Benjamin-Bona-Mahony-Burgers equations in n-space dimensions, Nonlinear Anal. 25 (1995), 1343-1369. | Zbl 0838.35118