Existence and uniqueness theorems for fourth-order boundary value problems
Jolanta Przybycin
Annales Polonici Mathematici, Tome 66 (1997), p. 59-64 / Harvested from The Polish Digital Mathematics Library

We establish the existence and uniqueness theorems for a linear and a nonlinear fourth-order boundary value problem. The results obtained generalize the results of Usmani [4] and Yang [5]. The methods used are based, in principle, on [3], [5].

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:270389
@article{bwmeta1.element.bwnjournal-article-apmv67z1p59bwm,
     author = {Jolanta Przybycin},
     title = {Existence and uniqueness theorems for fourth-order boundary value problems},
     journal = {Annales Polonici Mathematici},
     volume = {66},
     year = {1997},
     pages = {59-64},
     zbl = {0885.34023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z1p59bwm}
}
Jolanta Przybycin. Existence and uniqueness theorems for fourth-order boundary value problems. Annales Polonici Mathematici, Tome 66 (1997) pp. 59-64. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z1p59bwm/

[000] [1] M. S. Berger, Nonlinearity and Functional Analysis, Academic Press, New York, 1977. | Zbl 0368.47001

[001] [2] T. Kato, Perturbation Theory for Linear Operators, Springer, 1966. | Zbl 0148.12601

[002] [3] J. Mawhin, Contractive mappings and periodically perturbed conservative systems, Arch. Math. (Brno) 12 (1976), 67-74. | Zbl 0353.47034

[003] [4] R. A. Usmani, A uniqueness theorem for a boundary value problem, Proc. Amer. Math. Soc. 77 (1979), 329-335. | Zbl 0424.34019

[004] [5] Y. Yang, Fourth-order two-point boundary value problems, Proc. Amer. Math. Soc. 104 (1988), 175-180. | Zbl 0671.34016